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POTLURI RAO* POTLURI RAO* 

In studying the properties of least squares estimates 
we implicitly assume that all the variables are measured 
without errors. When some, or all, of the variables are 
subject to errors, even though the estimated equation is 
a true relation, the regression estimates can be biased. 
In empirical research we often face variables with 
errors of some kind or other. Research in this area, 
generally known as the errors-in-variables model, is 
concentrated mainly on the theoretical properties of the 
estimates, such as the asymptotic bias, in a two- 
variable regression model. In a practical situation, 
however, a researcher is interested in assessing the 
direction and approximate extent of bias in given data 
in order to decide on whether to keep a variable in the 
equation. In this paper we provide analytical expres- 
sions to evaluate bias when all of the variables of a 
k-variable regression model are subject to error. These 
expressions are derived under general conditions, so 
that a researcher may tailor the expressions to suit the 
needs of any given situation. 

Let the true relationship between the variables be 

X*k+l,t = OalXlt* + 2X2t* + * + COkXkt* + t, 

t= 1,2,...,T (1) 

where the variables with asterisks (*) are measured 
without errors, and the error terms (Et) follow the 
assumptions of the classical model. 

To make the analysis as general as possible let us 
assume that all the variables are subject to errors 

Xit = Xit* +ft, i = 1, . . ., k + 1 

where xi is the observed value and fi is the error. 
The true relation (1) may be rewritten in the ob- 

served values of the variables as 

Xk+l,t = aiXit + 22t + + * + akXkt + Zt + (t, (2) 

where Zt = fk+l,t - alflt - a2f2t - * * - akfkt. 
The estimated regression equation from the observed 

values of the variables is 

Xk+l,t = axi t + a2X2t + * + akXkt + et. (3) 
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For analytical convenience we may interpret the es- 
timated equation (3) as a misspecification of the true 
relation (2), with z as a left-out variable. We know that 
omission of a variable in the classical regression model 
results in biased estimates, and the expression for bias 
in estimate l1, for example, is given in the Yule nota- 
tion as' 

B(a1) = E(Ca) - a = bz,.23...k 

where bz1.23...k is computationally equivalent to the 

ordinary least squares estimate in the auxiliary regres- 
sion equation: 

Zt = bzl.23...kXlt + bz2.13...kX2t + * * + bzk.12...k-lXkt + Et. 

In the matrix notation, bz1.23...k is the first element in 
the b vector defined as 
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'See Rao [1]. 
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where X.23 ...k,t is defined in the Yule notation as the 
tth residual in the auxiliary regression equation with xl 
as a dependent variable and (X2, x3,. .., Xk) as in- 

dependent variables, and E X2l.23..k = T= x21.23..k,t. 
A proof of the equality (5) may be obtained by pre- 
multiplying and postmultiplying the original matrix 
by the presumed inverse and using the following proper- 
ties of regression equations:2 

XlXl.23.... k = E X21.23...k 

X2X1.23...k- = 0 

bl2.3...k = E Xl.3...k'X2.3...k/E X 2.3...k 

By using equality (5) and noting that x21.23... = 

xl2(1 - R21.23...k), where R1.23...k is the multiple 
correlation coefficient between x1 and (x2, X3,.., Xk), 

we may express the bias term in two different forms as 

E = .X1z - b12.3...k X2Z - *' - blk.23...k-1 XkZ 

B(a) = E xI2(1 - R21.23...k) 

(6) 
or 

A 
E 1 E xlz b21.3...k E x2z 

( )1 - R21.23...k jE X12 1 - R22.13... k X22 

bkl.23...k-1 E XkZ 

1 - R2k.12... k1 E Xk 2 
( 

In these expressions for bias, the b's and R's are 
known, as they can be computed from the observed 
values of the variables. The only unknown quantities 
are the terms involving the variable z. In a practical 
situation, however, the researcher is interested in 
knowing the nature of bias if the errors were generated 
in a particular way. Let us consider a few practical 
situations to illustrate the point. 

Consider a case where only one of the variables, say 
Xk, is subject to errors. Suppose we are interested in 
knowing the nature of the bias in 1i if the errors in xk 
were generated such that the error term fk is uncorre- 
lated with the true values of the variables x*. In this 
case we want to know the bias if E fkxj* were equal to 
zero. We can easily evaluate the terms involving z under 
this assumption. Then expression (7) is convenient to 

interpret, as it can be readily reduced asymptotically to 

( ) k' bk.23...k-1 fk2 

1 -- Rk.123...k-1 c E Xk 

Even though the variable corresponding to a regres- 
sion coefficient xl is error-free, error in the other vari- 
ables can introduce bias in its regression coefficient. In 
this example, bias in a- depends on the ratio, Xk = 
E fk2/ Xk, the proportion of variation in xk due to 

the error term. The larger the contribution of the error 
term to the variance of Xk, the larger the bias in all the 
regression coefficients. Even though Xk may be large, if 
akbkl.23...k-- is very small the extent of bias in cl can be 

2 See Yule and Kendall [3, pp. 285-8]. 

negligible. The bias depends also on the multiple 
correlation between the variable xk and all of the other 
independent variables in the regression. When this 
multiple correlation is large, even though the variance of 
errors may be small relative to the variance of xk, the 
bias can be substantial. 

When the researcher has prior knowledge of the sign 
of the parameter ak, which is usually the case in many 
empirical works, the direction of bias is obvious from 
the sign of bk1.23... k-, which can be computed from the 
available data. In order to know the extent of bias, 
however, we need to know the term akXk. In many 
cases it may be possible to obtain an approximate 
value of the term akXk on the basis of extraneous 
information. 

The expressions for bias given in (6) and (7) are 
general. and may be adopted to any practical situation. 
To demonstrate the flexibility of these expressions let us 
consider the case where all the variables are subject to 
the same error. This kind of a problem is frequently 
found in log-linear models where all the variables are 
deflated by a "wrong" index in adjusting for trend.3 
In this case 

fi = f foralli. 

Suppose we are interested in knowing the bias if the 
error (f) were uncorrelated with the real values of all 
the variables; we can evaluate the terms involving 
the variable z under this assumption. In this case 
expression (6) is convenient to interpret as it reduces 
asymptotically to 

B(Ai) = Xi(l- a - - * - ak) 

X (1 b123.. - - b.3..lk.23...k-l1) 

1 -R21.23...k 

In this case bias depends not only on Xi and R1.23... , 
but also on the degree of the function being estimated 
(a+1a2 + +2 a + C* k + ). 

In empirical research we often worry about the con- 
sequences of errors in the variables. By using the expres- 
sions derived in this paper, we can perceive the nature 
of bias under different error term assumptions. One 
major advantage of this particular analysis is that the 
expressions for bias are derived in terms of the observed 
values of the variables, whereas the theoretical results 
in the literature are usually derived in terms of the real 
values of the variables. These results should provide 
some guidance in practical situations. 

The author is grateful to Professors Zvi Griliches 
and Juan Zapata for their helpful comments. 
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