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                                                 Chapter  2

                        Uses of Summary Statistics in Linear Regression

After having obtained estimates of the parameters in a linear regression equation, the 
researcher usually computes summary statistics to assess the usefulness of the estimates.
The meaning and use of these statistics is especially valuable in applied econometrics, 
where their role is not always to provide cut-and-dried answers. Instead they are the 
basic tools of the applied econometrician in working his way through an empirical 
problem. The typical “textbook” econometric problem in which the model is clearly 
specified is seldom encountered in empirical research. Applied econometricians use a 
great deal of judgment at various stages of research by utilizing summary statistics to 
“feel the data.”

It is difficult to set up definite rules concerning the uses and abuses of these summary 
statistics as econometric tools, since their proper selection requires skill and intuition on 
the part of the researcher. He should be aware of when to use a tool and also of when not
to use it. It should be kept in mind throughout this book that applied econometrics is an 
art.

2.1 Multiple Correlation Coefficient

In linear regression estimation, the residuals indicate the extent of the movement in the 
dependent variable that is not explained by the independent variables. If the residuals are
small relative to the total movement in the dependent variable, then it follows that a 
major part of the movement has been accounted for. Accordingly, the summary statistic 
known as the multiple correlation coefficient is defined to measure the extent of 
movement in the dependent variable that is explained by the independent variables. 
Conventionally, instead of the multiple correlation coefficient, its square (R2) is reported 
with all the regression equations.

The square of the multiple correlation coefficient is defined as

                   R2 = variation explained by the regressionequation
total variation of the dependent variable

 .                      (2.1)
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Since the residuals represent the movement in the dependent variable that is unexplained
by the independent variables, the R2 may also be expressed as

                          R
2 =

Σ(Y−Ȳ )2−Σe2

Σ(Y−Ȳ )2                                          (2.2)                

where (Σ(Y−Ȳ )2) and (Σe2) are variations of the dependent variable and of the residual 
respectively.

The summary statistic so defined measures the proportion of variation in the dependent 
variable that is explained by the independent variables. This particular definition has a 
valid interpretation as a summary statistic only when the regression equation contains 
the constant term either explicitly or implicitly.

In ordinary least squares estimation, when the researcher includes an additional variable 
in the regression equation the sum of squares of the residuals (Σe2) necessarily 
decreases. This is a mathematical property and does not depend on the “relevance” of 
the additional variable in the causal relation. Therefore, whenever a variable is added to 
the regression the R2 necessarily increases.

The researcher should note that even though R2 is used as a measure of the proportion of 
variation in the dependent variable that is explained by the regression equation, it should
not always be interpreted as a determinant of “goodness of fit” of the causal relation. We
will treat this point in more detail later on.

As an illustration, consider the consumption function estimated for the United States for 
the time period 1956 to 1960.

                        Ct  = - 0.34   + 0.76 Y t  +  0.30  Ct−1                          (2.3)

The sum of squares of residuals (Σe2) corresponding to this equation is 0.0015, and the 
variation in the dependent variable (Σ(C−C̄)2) is 0.3010. Using definition (2.2), the R2 
may be computed as

                          R
2 = 0.3010−0.0015

0.3010
= 0.99 .                             (2.4)

When presenting his results, the researcher customarily gives the statistic R2 as a part of 
the estimated regression equation, usually in the following manner:
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                   Ct = − 0.34 + 0.76 Y t + 0.30C t−1             R2 = 0.99 .              (2.5)

Regression equation (2.5) explains 99 percent of the variation in the dependent 
variable C.

Suppose that instead of estimating the consumption function the researcher 
is trying to explain aggregate savings, and suppose that he has postulated the 
causal relation

                  St = α 0 + α 1Y t + α 2C t−1 + ε t ,                                                      (2.6)

where S, is aggregate savings in a given quarter defined as

                   St = Y t−Ct  .                                                                                  (2.7)

For the data 1956 to 1960 the researcher would obtain the following estimated equation:

                   St = 0.34 + 0.24 Y t − 0.30Ct−1             R2 = 0.64                        (2.8)

Whereas the consumption function explains 99 percent of the variation in the dependent 
variable, the savings function explains only 64 percent. The researcher, concluding that 
the consumption function is a “better causal relation” than the savings function, may be 
tempted to retain the consumption function for policy purposes and never to mention the
savings function again. He should cultivate resistance to such temptations, for reasons 
that will become clear.

Let us turn now to an interpretation of the consumption and savings functions. If while 
holding the previous quarter’s consumption constant the income of the economy (Y) is 
increased by one dollar, then according to the consumption function the consumption in 
the current quarter increases by 0.76 dollars, and according to the savings function 
savings increase by 0.24 dollars—which is, in fact, that part of the additional dollar that 
was not spent (1 - 0.76) according to the consumption function. Both the consumption 
function and the savings function are providing identical information on the 
consumption behavior of the United States. Similarly, holding current income constant, 
if we increase the previous quarter’s consumption by one dollar we get identical answers
from both equation (2.5) and equation (2.8).

Even though the two regression equations corresponding to the same data are providing 
identical information on the economy, one has a larger value for the summary statistic R2

than the other. To use R2 as a measure of the appropriateness of the regression equation 
for explaining the movements in the dependent variable would, in this situation, be a 

                                                           Summary Statistics                                                 page    4



misuse of the statistic. 

A high R2 may imply the appropriateness of a regression equation for explaining the 
movements of a dependent variable, but a low R2 does not necessarily imply that the 
regression equation is inappropriate. The source of this possible misuse of R2 lies in its 
definition.

In estimating the two equations (2.5) and (2.8) the researcher is imposing certain 
conditions on the residuals of each. Close examination reveals that these conditions are 
the same for both estimations. Since the same set of residuals satisfies the conditions 
imposed by the two equations, the implicit regression estimates and the variation in the 
residuals must be the same. The implicit correspondence between the regression 
coefficients may readily be seen by inserting the identity (2.7) into the savings function 
(2.8) to produce

                              Y t−Ct = 0.34 + 0.24 Y t − 0.30 C t−1                                   (2.9)

which is nothing but the consumption equation (2.5) expressed in a different form. This 
can be seen by taking Y, to the right-hand side of (2.9) and then multiplying through 
by -1. The result is (2.5).

Even though the residual sum of squares for the two regression equations is the same, 
the variation in the dependent variables is different because in one case we have C and 
in the other case S as the dependent variable: Σ(Ct−C̄)2 is not equal to Σ(St−S̄)2. By using
definition (2.2) we obtain different values for R2 for the two equations even though the 
implicit regression coefficients and the variation in the residuals are identical.

In general, if instead of using the dependent variable one uses any linear combination of 
dependent and independent variables, he is bound to get the same residual sum of 
squares and implicit parameter coefficients, but different R2's. Numerous examples can 
be found in current empirical studies. The most common case occurs in demand 
functions, in which the quantity demanded is specified as a function of certain 
independent variables. Given a change in some independent variable, a new value of the 
dependent variable is obtained, but this “desired” quantity cannot be attained 
instantaneously. 

Therefore, the partial-adjustment mechanism is posited. A typical resulting equation 
might then be
                                Y t = β 0 + β 1 X 1 t + β 2Y t−1 + ε t  .                                    (2.10)
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Suppose that instead of the level of quantity demanded, Y t , the researcher wants changes
in demand to be predicted by his regression equation. He then subtracts Y t−1 from both 
sides of the equation, obtaining

                     (Y t−Y t−1)= β 0 + β 1 X1 t + β 3 Y t−1 + ε t .                                    (2.11)

The R2 from this equation will usually be smaller than the R2 from the equation (2.10), 
but a relatively low R2 does not necessarily mean a poor fit. Note that we are explaining 
the variance of changes in Y t in one equation and the variance of Y t in the other.

This result occurs because the dependent variable is not the same in both equations. 
Another situation arises when the dependent variables are different functional forms of 
the same variable. In these cases, also, the R2 cannot be used for comparison of the two 
equations. Consider, for example, the following:

                             Y t = β 0 + β 1 X 1 t + β 2 X 2 t + ε 1 t                                          (2.12)

                       logY t = γ 0 + γ 1 X 1t + γ 2 X 2t + ε 2 t .                                         (2.13)

The specification of the model, the error terms, and the computation of R2 for these two 
equations are entirely different and provide no common ground for comparison of the 
relative performance of these equations on the basis of computations of R2.

It is clear from the above discussion that R2 can be legitimately used for comparison of 
the relative performance of two competing regression equations only when the 
dependent variables are the same. And since R2 always increases when independent 
variables are added, we need the further restriction that the number of X's be the same in 
each equation being compared.

It may seem now that R2 has little, if any, value; but this is not the case. For example, we
may use it to determine which of several competing definitions of an independent 
variable is most appropriate empirically. 

Consider a simple Cobb-Douglas production function:

                     logQ = β 0 + β 1 log K + β 2 log L + ε   .                             (2.14)

The variable K, capital, in this example is assumed to be well defined, but suppose the 
researcher is faced with several competing definitions of the variable L, labor. Suppose 
also that on theoretical grounds it is not obvious which of the several definitions is most 
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appropriate. One way to proceed is to estimate a separate production function for each of
the definitions of labor; the definition that produces the highest R2 when used in the 
equation may be considered empirically preferable. The argument for this procedure is 
that the precise empirical definition of variables should be selected so as to put the 
theory in question in its best light.

This procedure should not be misused. It applies only to the choice among a well-
selected and theoretically acceptable set of alternative definitions of a given variable. 

It may happen that a nonsensical definition of the variable will give the highest R2; this, 
of course, does not mean that it is the appropriate one to use. Basing the choice of 
appropriate definition of an independent variable on a maximum R2 is justified only 
when the model has been fully specified and all the other variables of the model are well
defined. This procedure is a guide in empirical research, and not a theoretical rule.

Consider the case of a researcher who is working on the same regression equation for 
several sets of data—for example, the production function for each state separately. It 
may be that no definition of a particular variable, say labor, will give the highest R2 in 
every case. Suppose the theoretically valid definition is efficiency units of labor, and 
suppose that data are available on variables such as the number of workers, wages paid, 
education of workers, industrial concentration, etc. The efficiency of workers may 
depend in one state on the level of education, in another state, on the concentration of 
minority groups, etc. In these cases selection according to the highest R2 will yield 
different empirically appropriate definitions of labor. When use of the highest R2 
suggests the use of different definitions for different states then, of course, the researcher
should investigate the reasons underlying such behavior of the data. When a theoretical 
justification for the anomaly is not forthcoming and when he has strong reasons to 
believe that the efficiency units of labor in all the states should have the same definition,
then he may select the definition that gives the highest R2 most of the time, using his 
own judgment in weighing empirical and theoretical considerations underlying the 
problem. 

Whenever he uses R2 as a criterion the researcher should guard against inadvertently 
selecting a possible candidate which is actually some disguised form of the dependent 
variable. For example, suppose that the researcher is estimating the relation between 
output and man-hours. The published monthly and quarterly output data may have been 
interpolated by the data-collecting agency from information on man-hours. Thus the 
researcher should expect to obtain a high R2 when he regresses output on man-hours or 
man-hours on output. A high R2 in this case gives little, if any, information.
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When the R2 values from different definitions of a variable do not differ substantially 
from each other, then the use of the highest R2 as a guide has little significance, and one 
definition is as good as the other.

Another example of the meaningful use of highest R2 concerns the choice of the 
appropriate lag for an independent variable. Suppose that we wish to explain the level of
interest rates, it , and suppose we have theoretically considered the lagged money supply 
to be a relevant independent variable along with many others: That is, a change in the 
money supply is considered to have a once-for-all effect on the level of the “interest 
rate” after τ  time periods. (This is not to be confused with the distributed lag effect to be
discussed in Chapter 7.) Then our regression equation would be specified as

                          it = β 0 + β 1 M t−τ + β 2 X2 t + β 3 X 3t + ε t  ,                       (2.15)

where τ  is the lag period in the money supply (M).

The empirically appropriate lag in the supply of money in explaining the interest rate 
may be obtained by fitting equation (2.15) for various values of τ  and considering as 
empirically appropriate that value which gives the highest R2. This procedure is, of 
course, valid only when the rest of the specification is correct.

In empirical research one comes across many such occasions where R2 can be used as a 
guide rather than as a summary statistic.

2.2 Residual Variance

Consider the case in which the dependent variable is the same in all regressions, but the 
list of independent variables is different. For example, examine the following two 
regression equations:
 
                       Y t = β 0 + β 1 X 1 t + ε 1 t  ,                                              (2.16)

                       Y t = β 0 + β 1 X 1 t + β 2 X 2 t + ε 2 t .                                 (2.17)

Even though the dependent variables are the same, the R2 for the two equations are not 
comparable because the number of independent variables is not the same. As mentioned 
before, the second equation (2.17) necessarily gives a higher R2. The sum of squares of 
the residuals will be smaller, but estimation of the second equation imposes an extra 
condition on the residuals. Is the reduction in the residual sum of squares worth the price
of the extra constraint? To answer this, a summary statistic—residual variance— 
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is computed:
                            V (e) = Σe2/υ   ,                                                              (2.18)

where υ  is the degrees of freedom (that is, the total number of observations less the 
number of constraints imposed on the residuals in estimating the parameters). Even 
though the residual sum of squares (Σe2) necessarily decreases with the addition of a 
variable, the residual variance, V(e), need not, because the denominator in (2.18) is also 
changing. The residual variance takes into consideration information about the degrees 
of freedom, whereas the R2 does not. Note that V(e) as defined in equation (2.18) is 
meaningful only when the regression equation has a constant term.

A summary statistic analogous to R2 is defined on the basis of the residual variance by

                               R̄2 = 1−V (e)/V (Y ) ,                                                    (2.19)

where V( Y) is the variance of Y defined as V( Y) = Σ(Y−Ȳ )2/(T−1) . So defined, the 
statistic R̄2 can decrease when a new variable is added to a regression equation even 
though R2 necessarily increases. Since V( Y) does not depend on the independent 
variables, there is one-to-one correspondence between the R̄2 and the variance of the 
residual V(e).

One should not jump to the conclusion that the equation which yields least residual 
variance (the largest R̄2) is necessarily always desirable. In a regression equation, the 
decision on including or excluding a variable is based on theoretical considerations and 
the use to which the regression is put, rather than on mere maximization of the summary
statistics R2 and R̄2.

However, as an example of an occasion when the equation with the least residual 
variance is desirable, consider the case in which a researcher is interested in predicting 
the values of a dependent variable to a yet-unknown period. The predicted value need 
not be the same as the value of the dependent variable actually observed for that period, 
because of the error of prediction. Given two predictors, one would choose that one 
which has the smallest variance of the error of prediction. A regression equation with 
smaller residual variance also has smaller variance of the error of prediction.

When adding an independent variable increases the R̄2, the prediction power can be 
increased by including that variable, because the variance of the error of prediction is 
thereby decreased. When adding an independent variable decreases the R̄2, then the 
researcher, of course, is losing reliability in prediction by including that variable in the 
regression.
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When the objective is testing of a null hypothesis based on the regression estimates and 
not prediction of a future value of the dependent variable, then the researcher is 
interested in unbiased estimates of his parameters. Unbiased estimates may be obtained 
only by including all the theoretically specified variables in a regression equation 
irrespective of what they do to the summary statistic R̄2. Discarding a theoretically 
relevant variable may increase R̄2 but it may result in biased estimates of the parameters.

The problem of prediction is an integral part of econometric research. When a researcher
is interested primarily in predicting values of a specific variable rather than in testing a 
theory, he will choose his variables in such a way as to obtain the regression equation 
with the least residual variance.

2.3 Standard Errors

Having obtained the regression coefficients by using the ordinary least squares 
procedure, the researcher is interested in assessing the “precision” of the estimation 
procedure. To this end, he computes standard errors of the regression coefficients.

These computed standard errors do not necessarily reflect the true precision of the 
estimates, which is measured by the theoretical variance of the distribution of an 
estimate, not by the standard errors. The theoretical variance, however, is an unknown. 
To bring out the distinction let us first consider the theoretical variance.

When several estimation procedures exist for the same parameters from the same data, 
the researcher would like to use the one offering maximum precision. Even when no 
choice in estimation procedures is available, he may still be interested in discovering the
precision of his estimates for the purpose of testing a null hypothesis.

Consider a situation in which the truth is

                  y t = β 1 x1 t + β 2 x2 t + ε t ,                                                                (2.20)

where lower-case letters indicate deviations from the mean; hence the constant is 
implicit. Let us suppose that the values of the parameters (β 's) and the independent 
variables (x's) are known. Then the value of the dependent variable depends on the 
values of the error terms in equation (2.20). Since in this example all the terms on the 
right-hand side of the equation are known except for the error terms, the values of y vary
with the error terms alone. For different sets of y's (which depend on the ϵ ' s), and of 
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given x's, we obtain different estimates of the parameters by using the ordinary least 
squares estimation procedure. The question then is: how sensitive are the estimates 
going to be to the particular values of the error terms?
 
We are assuming that the error terms are distributed independently of each other and that
they are uncorrelated with the independent variables (x's). Many sets of error terms may 
satisfy these conditions. Suppose the errors are a particular set, say ε*. Corresponding to
these error terms is a set of y values given by equation (2.20). When these values of y are
regressed on the independent variables we obtain one set of estimates for the parameters,
say β̂ *. These estimates need not be equal to the parameters, because the ordinary least 
squares estimates are chosen to minimize the residual sum of squares, and the true 
parameter values need not correspond to the minimum residual sum of squares in any 
given sample. If, instead of ε*, the errors were a different set, say ε**, then we would 
have obtained a different set of estimates for the parameters, say β̂ **. Since we do not 
know which set of errors corresponds to the given data on the y's, we cannot say 
anything about the extent of deviation of these estimates from the true parameters. We 
can, however, study how much dispersion the estimates would exhibit if the errors were 
in fact drawn at random from a population with known variance. In such a situation any 
combination of error terms has an equal chance of corresponding to the given data on 
the y's. When the errors are drawn at random from a population with zero mean and 
constant variance σ ε

2, then the regression coefficients have a distribution which can be 
established analytically, as will be shown in Chapter 3.

In defining the precision of the estimates in this way, we are using information on the 
distribution of error terms when the values of independent variables and parameters are 
known. Since the precision is defined conditionally upon these values, we expect 
precision to depend on these values as well. In a linear regression equation the precision 
depends only on the values of the x's, and not on the values of the parameters.

The conventional way of measuring precision when the statistical distribution of an 
estimate is known is by its variance. The smaller the variance of an estimate the greater 
its precision—that is, the less sensitive the estimates will be to different sets of error 
terms that could have occurred in the y's.

The theoretical variance of the distribution of β̂ 1 in equation. (2.20) may be derived as 

                    V (β̂ 1) = σ ε
2

Σ x1
2(1−r x1 x2

2 )
                                                                (2.21)

where σ ε
2 is the variance of the population that generated the error terms and r x1 x2, is the 
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correlation between x1 and x2. It can be seen from equation (2.21) that the larger the 
variation of the independent variable x1 relative to the variance of the error term, the 
smaller the variance of the estimate β̂ 1. That is, the precision of the regression 
coefficient corresponding to an independent variable increases with the variation of that 
variable. Precision also depends on the co-movements of the independent variables. The 
smaller the correlation between the independent variables, the higher the precision of the
regression estimates.
 
These are theoretical results, and they involve σ ε

2 , which is generally unknown. The 
researcher can, however, estimate the variance of the error term from the residuals of the
regression equation. And, since the variance of the estimate of β̂ 1 is unknown, we may 
estimate it by replacing σ ε

2 by its sample estimate. Thus, an estimate of the variance of
β̂ 1 is

                       V̂ (β̂ 1) =
V (e)

Σ x1
2(1−r x1 x2

2 )   ,                                                       (2.22)

where V̂ (β̂ 1) stands for an estimate of V(β̂ 1), and V(e) is the sample variance of the 
residual (e):
                       V (e) = Σe2/υ      where υ  = degrees of freedom.                  (2.23)

 
The variance is in square units of the regression coefficient. To convert them to 
comparable units, the standard deviation of the regression coefficient is defined as the 
square root of the variance of the regression coefficient. The true standard deviation is a 
theoretical quantity. When computation of the standard deviation is based on the 
estimate of variance rather than on the variance itself, it is called the standard error to 
distinguish it from its theoretical value.

Whenever the researcher reports the standard error of his estimate he is explicitly stating
that the result is an estimate of the standard deviation of the coefficient and is not the 
standard deviation itself. Despite the distinction in labels, researchers often overlook this
point and use standard errors as if they were standard deviations; such misuse of the 
results should be discouraged.  

When the estimate of variance of the regression coefficient is biased, the estimated 
variance does not reflect the precision of the regression coefficients. In such cases the 
theoretical standard deviation reflects the precision, but the standard error does not.

When the researcher has a choice between two alternative estimation procedures, he 
may wish to choose the one having the greater precision. Since the precision of 
estimates is reflected only in the standard deviations and not in the standard errors, he 
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should not conclude that the estimation procedure which yields smaller standard errors is
necessarily preferable. A thorough investigation into the theoretical properties and 
standard deviations must precede such decisions.

Computational precision as evidenced by small standard errors of regression 
coefficients does not necessarily indicate that the most theoretically precise estimation 
procedure has been used.

To illustrate the above points, consider the consumption function example:

                      Ct = β̂ 0 + β̂ 1Y t + β̂ 2 Ct−1 + et  ,                                                    (2.24)

where the β̂ ’s are the least squares estimates. The standard errors of β̂ 1 and β̂ 2 may be 
computed from the following summary information:

                   V (e) = Σe2

υ = 0.001512
19−3

= 0.0000945  ,                                  (2.25)

                   Σ y t
2 = Σ(Y t−Ȳ )2 = ΣY t

2−ΣY t .ΣY t /T = 0.2604 ,                    (2.26)            

                  Σc t−1
2 = Σ(C t−1−C̄)2 = ΣC t−1

2 −ΣC t−1ΣCt−1/T = 0.2845 ,       (2.27)

                  r yt ct −1
=

Σ y t c t−1

√Σ y t
2 .Σc t−1

2
= 0.9728 .                                                     (2.28)      

    
To obtain a measure of precision, we should use the formulae for theoretical variance:

                    V (β̂ 1) = σ ε
2/ Σ y t

2(1−r yt ct−1

2 ) ,                                                           (2.29)

                   V (β̂ 2) = σ ε
2/ Σct−1

2 (1−r yt ct−1

2 ) .                                                          (2.30)

Since σ ε
2 is unknown, we shall estimate the variances by replacing σ ε

2 by V(e):

                V̂ (β̂ 1) = 0.0000945 /(0.2604)(0.0272) = 0.00676,                           (2.31)

                V̂ (β̂ 2) = 0.0000945 /(0.2845)(0.0272) = 0.00619 .                          (2.32)

  The standard errors of β̂ 1 and β̂ 2 are therefore

                 St . error (β̂ 1) = √V̂ (β̂ 1) = 0.082  ,                                             (2.33)
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                 St . error (β̂ 2) = √V̂ (β̂ 2) = 0.079 .                                              (2.34)

It is conventional to report the standard errors of the coefficient estimates as a part of the
regression equation by enclosing them in parentheses below the respective estimates. In 
its final form of presentation the consumption function would be

          Ct  = -0.34 + 0.76 Y t  + 0.30 Ct−1            R
2 = 0.99 .                              (2.35)

                               (0.082)   (0.079)

In the case of more than two variables, computation of standard errors by using explicit 
formulae as above would be computationally burdensome. Standard computer programs 
provide the standard errors of the estimates, together with the estimates, at an 
insignificant marginal cost.

2.4 Bias in the Estimates

For any given set of independent variables the regression estimates of a parameter 
depend on the error terms actually present in the data. When the errors are not known 
but are assumed to have been drawn randomly from a population with known 
distributional properties, then the regression estimates have a statistical distribution. We 
studied the interpretation of the variance of this distribution in the preceding section. 
Now we concentrate on the mean of this distribution.

The statistical distribution of a regression estimate may or may not center around its 
corresponding parameter. Consider, for example, a case in which there are three 
different alternative ways of estimating a parameter, β , and in which the distributions of 
these estimates (β̂ , ~β ,  and β *), are as presented in Figure 2.1.

Such estimates are called unbiased. The estimates β̂  and β̂ * are not centered around their
parameter values and are called biased. The bias of an estimate is measured as the 
difference between the mean value of the distribution of an estimate and its true 
parameter value. When the bias is positive—that is, when the mean value of the 
distribution is larger than its parameter, as in the case of β̂ *—then the estimator is said to
be upward biased. Conversely, when the bias is negative, as in the case of β̂ , the 
estimator is negatively biased.
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                                            Figure 2.1. Distribution of β̂ , ~β , and β̂ *

The distribution of β̂  is centered around its parameter value β .

The use to which an estimate is to be put determines which one is chosen as 
“appropriate.” When the researcher is interested in testing a null hypothesis, for 
example, he may prefer an unbiased estimate because many test procedures are based 
only on unbiased estimators of a parameter. When his objective is not the elimination of 
bias but maximum precision, then, of course, he will look for the minimum variance 
estimator even though it may be biased. 

When the researcher is faced with a situation in which he has to choose between an 
unbiased estimate with large variance and a biased estimate with small variance, he 
cannot use either the bias or the variance as the sole criterion but must give some weight
to each aspect. One criterion that gives equal importance to these two measures is the 
mean square error. Since the variance is in the square units of bias, the giving of equal 
importance to bias and to variance implies that equal importance is attached to variance 
and to the square of bias. Thus the mean square error is defined as the sum of variance 
and of the square of bias. If one of these two components gets smaller at the expense of 
the other, then the net “benefit” is reflected by the mean square error. The mean square 
error (MSE) of an estimate β̂  may be written as

               MSE( β̂ ) = V ( β̂ ) + [Bias( β̂ )]2 .                                  (2.36)

The mean square error of an estimate is a theoretical property based on the two unknown
quantities, variance [V(β̂ )] and bias [Bias (β̂ )]. A researcher using an estimate in a 
decision-making process will probably want the estimate to have the smallest mean 
square error rather than the smallest of one of its two components.

                                                           Summary Statistics                                                 page    15



The choice of estimation procedure depends crucially on the prospective use of an 
estimate. In some cases the researcher looks for unbiased estimates at any cost, in other 
cases he wants maximum precision even though the estimate may be biased, in yet other 
cases he wants the minimum mean square error. The point is that in applied 
econometrics the researcher should be alert to all aspects of his estimation procedure and
should not rely on only one of them.

2.5 Best Linear Unbiased Estimates

In a typical textbook example of a regression equation, the causal relationship between 
the dependent and independent variables is linear and the specified relation is the truth. 
In this case the independent variables are clearly defined and exhaust the sources of 
variation in the dependent variable. We may express the true specification as

                    y t = β 1 x1 t + β 2 x2 t + ... + β k xkt + ε t  ,                                  (2.37)

where lower-case letters represent the deviations of the variables from their respective 
means. In this case the constant term is implicit.

Suppose the researcher conducts a hypothetical experiment in which he draws a set of 
error terms (ε ' s) at random from a known distributions and computes y on the basis of 
these errors and of the independent variables (x's). Corresponding to a set of errors he 
obtains a set of least squares estimates for the β 's. If he repeats the experiment, drawing 
a new set of errors every time but keeping the same values for the x's, then the least 
squares estimates of the β 's obtained in each trial will exhibit a statistical distribution.

The Gauss-Markov theorem states that when the estimated equation is the truth, the 
distribution of the ordinary least squares estimate of any of the parameters in the above 
experiment is centered around the true values; that is, all the estimates are unbiased. 
Further, the ordinary least squares estimates are the least variance estimates in the family
of linear unbiased estimates.

When an estimate is unbiased and has minimum variance in the family of linear 
unbiased estimates, then it is called the Best Linear Unbiased Estimate (BLUE), or the 
minimum variance unbiased estimate. This is a theoretical property of the estimation 
procedure because the bias and variance are based on the theoretical statistical 
distribution of the least squares estimate in the above experiment.
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In applied econometric research, the theoretical properties of an estimate are 
unattainable goals and serve only as points of reference. Researchers seldom know the 
truth which would let them take advantage of any of these theoretical properties.

When an applied econometrician deviates from the truth—for example, by estimating a 
regression equation which is not the truth or by using a definition of a variable that is not
the truth—he commits a “sin.” That is, his estimates may not have the same theoretical 
properties as though he had used the truth. In all real situations the alternatives open to 
an applied econometrician involve certain amounts of such sin, and the best he can hope 
for in estimating a parameter is to follow the least sinful procedure of them all.

2.6 Left-Out Variables

The true regression specification can be estimated only when the researcher knows the 
truth and has data on all the variables to estimate it. A common situation is one in which 
the researcher has “left out” variables either because he is unaware of their presence in 
the true specification or because he does not have data for including them in the 
estimated equation.

The use of ordinary least squares when some variables are left out may introduce bias 
into the estimates. Bias that originates in this way is called specification bias. For 
instance, let the truth be

                       y t = β 1 x1t + β 2 x2t + ε t .                                      (2.38)

Here the lower-case letters are again deviations from the mean, hence the constant is 
implicit. We assume that no data are forthcoming for the variable x2, which is therefore 
operationally unobservable, so the following regression equation is estimated:

                       y t = β̂ 1 x1t + et  .                                                   (2.39)

The ordinary least squares estimate β̂ 1 is obtained by imposing restrictions on the 
residuals (e's). Since the constant term is implicit in the estimation, Σe = 0. The second 
constraint (Σ x1 e = 0) yields

                     Σ x1 y = β̂ 1 Σ x1
2  .                                                    (2.40)

The estimate β̂ 1, that satisfies the constraints on the residuals is
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                    β̂ 1 = Σ x1 y / Σ x1
2 .                                                     (2.41)

Since the truth is given by (2.38), equation (2.41) can be rewritten as

                  β̂ 1 = (β 1 Σ x1
2+β 2 Σ x1 x2+Σ x1ε )/Σ x1

2  .                                         (2.42)

Since the x's are held constant in repeated trials and the distribution of ε  is assumed to 
have zero mean, the mean value of the theoretical distribution of β̂ 1 is

                E( β̂ 1) = β 1 + β 2Σ x1 x2/Σ x1
2   .                                                     (2.43)

The estimate of β 1 from the ordinary least squares estimation of (2.40) when the truth is 
(2.38) is a biased estimate of the parameter β 1. The bias (β 2 .Σ x1 x2/Σ x1

2 ) depends on two 
terms, namely the regression coefficient of the left-out variable in the true relation (β 2), 
and the comovements of the left-out variable with the included variable (Σ x1 x2/ Σ x1

2).

The expression in equation (2.43) can be generalized into a case with K variables by 
using the Yule notation. A linear regression equation in Yule notation may be written as

                y = b y 1.23 ...k x1 + b y 2.13... k x2 + ... + b yk .123 ...k−1 xk + e  .                     (2.44)

The coefficients (b's) are given subscripts in a systematic way. The first subscript 
denotes the dependent variable, the second denotes the corresponding independent 
variable. The list after the comma (,) indicates other independent variables included in 
the regression. Since the estimates of the regression coefficients depend on which other 
independent variables are present in a regression, these subscripts are explicitly stated in 
each case.

In the case with x2 as the dependent variable and x1 as the independent variable, the 
regression equation in the Yule notation may be written as

                     x2 = b21 x1 + e .                                                             (2.45)

Where b21 is the ordinary least squares estimate from equation (2.45):

                         b21 = Σ x1 x2/ Σ x1
2  .                                                        (2.46)

Using the Yule notation we may rewrite expression (2.43) as

                        E( β̂ 1) = β 1 + β 2 . b21  ,                                                   (2.47)
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where b21 is computationally equivalent to the regression coefficient when x2  is the 
dependent variable, x1 is the independent variable, and no other variables are present in 
the regression equation. This term is used in simplifying the algebraic expressions and 
does not have any causal or economic interpretation.

The expression for bias in the general case where the truth is

              y t = β 1 x1t + β 2 x2t + β 3 x3 t + ... + β k xk 1 t + ε t  ,                            (2.48)

and where the following regression equation, without x2, is estimated,

               y t = β̂ 1 x1t + β̂ 3 x3t + ... + β̂ k xkt + et ,                                          (2.49)

the expected value of the estimate β̂ 1, is given by

                E( β̂ 1) = β 1 + β 2. b21.3... k  ,                                                               (2.50)

where b21.3 ...k is computationally equivalent to the regression coefficient of x1 when x2 is 
the dependent variable and all the variables x1 , x3 , ... , xk are included in the regression 
equation.

When an independent variable in the true relation is omitted, the regression coefficients 
from the OLS estimation procedure are biased. The extent of bias in each coefficient can
be obtained from equation (2.50). When a variable from the true relation is left out, a 
part of its influence in explaining the movements of the dependent variable is captured 
by the other independent variables. The relative share of each included variable in 
capturing the influence of the left-out variable is given by the b's (also called the 
auxiliary regression coefficients). If one independent variable has a larger partial relation
to the left-out variable than another, then the extent of bias in its coefficient will be 
larger.

When the left-out variable is not correlated with any of the independent variables then, 
of course, none of the coefficients is biased. In any sample the researcher rarely observes
zero correlation; hence some bias always exists, however small it may be. The applied 
econometrician is not worried about the mere existence of bias, but about its extent. 
When the bias is of second order in magnitude (smaller than the rounding error in 
truncating decimals), or even smaller, it causes no concern in most practical situations.
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2.7 An Example of Bias

Consider the linear regression equation (2.51) which attempts to explain the quantity of 
rice produced in the Guntur district of India for the period 1941-61.

           Rice = 993.633 + 0.046 I + 0.706 D + 48.219 R        R2 = 0.56                 (2.51)
                   (1368.440)  (0.273)     (0.945)     (11.282)

where I, D, and R are acres of irrigated area, acres of dry area, and inches of rainfall 
respectively.

The estimates of the regression parameters are disturbing, because it is well known that 
dry land does not produce 0.706 tons at the margin whereas irrigated land produces only 
0.046 tons at the margin, keeping all other independent variables constant. This strange 
result is a consequence of misspecification of the estimated regression equation. The 
true specification of the rice production function includes many variables in addition to 
those included in (2.51).

When the nature and data of these other variables are known, then we will include them 
in the regression equation to correct for the bias in (2.51)

In this particular example, let us assume that data on the other variables are not 
available. We may conjecture that the combined influence of the variables left out in the 
true equation is a smooth function of time. This influence could comprise any systematic
factors that affect the production function, whose movements may be changing with 
time in a smooth linear form.

The regression equation, with “t,” time, as an explicit independent variable for our 
example, is

       Rice = -739.9  + 0.578 I  + 0.218 D +  46.6 R  - 40.4 t        R2 = 0.61                     (2.52)
                (1755.4)   (0.442)     (0.959)       (10.9)    (26.9)

Equation (2.52) is consistent with our a priori experience. Comparison of (2.51) with 
(2.52) reveals that the omission of a crucial variable from equation (2.51) has caused the
independent variables, I and D, to capture a part of the omitted variable’s influence on 
the dependent variable. In the case of I the bias is negative, and in the case of D it is 
positive. Apparently the left-out variable has not substantially biased the coefficient of 
the rainfall variable.
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In this particular example, equation (2.51) indicates the presence of specification bias, 
and equation (2.52) sheds some light on the nature of the problem. The variable “t” here 
helps us by pointing out the presence of specification bias but does not explain what 
variables caused it. When the researcher has knowledge of the variables left out, 
inclusion of them will improve the situation. In our example, one has to explore for the 
factors causing the specification bias by using the signals provided by the variable “t”. 
In many practical problems the bias in the estimates may not be so conspicuous.

2.8 Irrelevant Variables

A case inverse to that of left-out variables is the case in which a variable not specified in
the true equation is added. Such variables are called irrelevant. 

  Consider the true equation

                            y t = β 1 x1t + ε t .                                                 (2.53)

Instead, the following equation is estimated:

                  y t = β̂ 1 x1t + β̂ 2 x2t + et.                        (2.54)

The OLS estimate β̂ 1 is given by

                         β̂ 1 =
Σ x2

2. Σ x1 y−Σ x2 x1 .Σ x2 y

Σ x1
2 . Σ x2

2−Σ x1 x2 .Σ x1 x2

  .                                (2.55)

The true relation is given by the equation (2.53). By substituting this expression 
in (2.55) we obtain

             β̂ 1 = β 1 +
Σ x2

2. Σ x1ε−Σ x1 x2 .Σ x2ε
Σ x1

2 .Σ x2
2−Σ x1 x2 .Σ x1 x2

 .                                     (2.56)

When expected values are taken on both the sides of (2.56), it may be seen that the OLS 
estimate of β 1 from equation (2.54) is nonetheless an unbiased estimate: E( β̂ 1)=β 1.

The addition of an irrelevant variable to a true specification does not cause bias in the 
estimates of the other independent variables. However, such an addition does necessarily
increase the variance of the estimates of all the coefficients. Thus, even though the 
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irrelevant variable does not introduce bias in the regression coefficients, it will reduce 
the precision of the estimates. This result can be generalized to a K-variable model.

The researcher may verify that the ordinary least squares estimate of β 2 is also an 
unbiased estimate. The mean value of the theoretical distribution of β̂ 2 is centered 
around its true value, namely zero. For analytical convenience the true equation (2.53) 
may also be written as

                y t = β 1 x1t + 0 . x2 t + ε  .                                            (2.57)

Obviously, in an empirical situation the addition of an irrelevant variable will typically 
yield a nonzero coefficient value for β̂ 2. This should not be interpreted as indicating that 
its distribution has a nonzero mean, for such is not the case when the true equation is 
(2.53).

2.9 Superfluous Variables

Up to this point we have been dealing with cases in which the truth is known. In applied 
econometrics the expressions for bias and variance offer only cold comfort, for in many 
practical situations it is neither simple nor unambiguous to state which is a left-out 
variable or an irrelevant variable. The theoretical results previously cited are useful only 
when we can “stick our necks out” and categorically state what we believe to be the 
truth. 

When the choice between competing alternatives will not make serious operational 
difference, a practicing econometrician should follow guidelines that involve a certain 
amount of judgment; he should not rely solely on knowledge of theoretical derivations.

When a new independent variable is added to a regression equation, the regression 
coefficients either (1) change substantially or (2) do not change substantially. When the 
coefficients change, it can be either because specification bias was present in the 
regression coefficients before the variable was added or because the added variable is 
irrelevant and the estimates after inclusion of the new variable are coming from a 
different distribution with larger variance but with the same mean.

 When the true equation is known we can distinguish between these possible situations, 
but when the researcher has only the computed regressions the problem requires a less 
straightforward assessment. Whenever the regression coefficients in the two situations 
are obviously different, our decision as to which equation to use may be extremely 
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crucial for the interpretation of the parameter estimates. In this case we must rely purely 
on the theoretical underpinnings of the regression equation to tell us which to choose.

On the other hand, we may have the following situation, in which the researcher fits the 
two regressions
 
                   Y t = β 0 + β 1 X 1t + ε 1 t ,                                        (2.58)

                    Y t = β 0 + β 1 X 1t + β 2 X 2 t + ε 2 t .                         (2.59)

Assume that no unambiguous theory exists that specifies which of the two equations is 
the truth. If equation (2.58) is true, estimation of equation (2.59) yields an unbiased 
estimate of β 1 but with a larger variance than to the corresponding estimate from 
equation (2.58). If equation (2.59) is true and (2.58) is estimated, then β̂ 1 is biased but 
has a smaller variance than the corresponding estimate from (2.59). Which equation 
should be chosen for empirically estimating the parameters is not easily answered, and 
the distribution properties of the estimates help us very little.

In some situations, the variable X 2 may be such that, if (2.58) is true, adding it as an 
independent variable and estimating equation (2.59) will yield less precise estimates, but
the loss in precision may be minor. It may also happen the other way—that is, if 
equation (2.59) is the true specification, leaving out the variable X 2 and estimating 
(2.58), will yield biased estimates, but the bias may be minor. If X 2 displays these two 
traits when included and excluded respectively, then we label it as a superfluous 
variable. A superfluous variable’s exclusion or inclusion in a regression equation does 
not alter the other coefficient estimates or their standard errors “significantly.” That is, 
when such a variable is added or deleted in a regression, the “damage” to the regression
coefficients of the other variables is not operationally significant. Since we do 
not know the truth, we use or discard the superfluous variables to suit our 
convenience.

Some standard guidelines in the use of superfluous variables are given here, but a word 
of warning is needed. These rules are applicable only to variables whose legitimacy in 
the regression under study is dubious. When the theory unambiguously states that a 
variable is a specified explanatory variable then, of course, it should not be omitted even
though it might appear superfluous.

As one guideline, then: when X 2 is a superfluous variable and its inclusion does not 
increase R2 sufficiently to increase the R̄2, then the variable is deleted from the 
regression. When inclusion of a superfluous variable increases R2 sufficiently to increase
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R̄2, then it is included because it reduces the residual variance but does not affect the 
other regression coefficients. When its inclusion reduces the residual variance, this 
implies that the residuals have some systematic component which is being captured by 
the included variable, and error terms are thereby better specified.

What we mean by “better specification of the errors” may be seen in the following 
example. Suppose the two possible truths are (2.58) and (2.59). When both are 
estimated, it is seen that the estimate of β 1 does not change when (2.59) is estimated but 
that R̄2 goes up. Here X 2 is superfluous, but ε 1 contains β 2 X2 which is systematic, so that
ε 2 is better specified in (2.59) as a random variable because the systematic part, β 2 X2, 
was purged from ε 1. So we say that in this particular case we may choose (2.59) as the 
appropriate regression equation because (1) we can still correctly interpret the estimated 
results and (2) we have significantly taken account of a systematic part of the error term.

A common practice among many researchers is to compute the t-ratios of the regression 
coefficients defined as

              t (β̂ i) = β̂ i/st . error (β̂ i)                                                (2.60)

and to discard the variables with t-ratios below a certain small value. This is not 
recommended as a common research method, for it is not possible to recognize a 
superfluous variable solely on the basis of the magnitude of its t-ratio. It is true that 
when a variable with a t-ratio smaller than unity is discarded from a regression equation 
the R̄2 increases, but this increase does not imply that the variable is superfluous. It may 
or may not be. If the discarding of a variable changes the regression coefficients of other
variables, then it cannot be superfluous even if its deletion increases R̄2. In such cases 
even if the variables in question have very small t-ratios their continued presence in the 
regression equation is dictated by theoretical considerations and not by the summary 
statistics.

2.10 Example of Misuse of Criteria for 
      Identification of Superfluous Variables

If the researcher starts out with conceptual errors, the standard criteria for identification 
of superfluous variables can no longer be used. For example, suppose theory has 
indicated that the demand for Ceylonese tea (TEA) in the United States is a function of 
disposable income (Y d), the price of Ceylonese tea (Pcy), and the price of a close 
substitute—Brazilian coffee (PBZ)  all relative to the price of food commodities in the 
United States. In the log-linear form the estimated demand function is
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       log TEA = 3.95  + 0.14 log PBZ + 0.75 log Y d  + 0.05 log PCY      R̄2 = 0.52      (2.61)
                        (1.99)   (0.14)              (0.24)             (0.41)         

Here the t-ratio of the price variable (Pcy) is very “low” and the coefficient has the 
“wrong” sign. If the researcher concludes that the demand for Ceylonese tea is price 
inelastic and discards (Pcy) while reestimating the demand function, he gets

             log TEA = 3.73  + 0.14 log PBZ + 0.73 log Y d    R̄2 = 0.54                          (2.62)
                              (0.71)   (0.13)              (0.14)   

By comparing (2.61) and (2.62) he may jump to the conclusion that the price variable
(Pcy) is superfluous and might interpret it as evidence that the demand for Ceylonese tea 
is, in fact, price inelastic.

He will be misguided, though, because he has forgotten one salient aspect of the demand
for Ceylonese tea in the United States: the strong competition from other tea-growing 
countries of the world. He should be reluctant to accept the implication that the price of 
other close substitutes does not influence the demand for Ceylonese tea.

One must, therefore, always search the theory for any conceptual errors. In this case the 
error can be readily recognized, since Ceylonese tea and Indian tea are such close 
substitutes in consumption that as the price of Indian tea changes, so does the demand 
schedule for Ceylonese tea. The latter can be properly interpreted only when the price of
Indian tea is held constant.

Multiple regression analysis allows us to hold other specified variables constant only 
when they are included in the regression equation. Clearly, the demand for tea equation 
(2.61) did not include the price of Indian tea, and therefore the coefficient of log Pcy was 
including two effects: changes in the price of Ceylonese tea (movements along a given 
demand schedule) and changes in the price of Indian tea (shifts in the demand schedule).

Even if our coefficient estimate for log Pcy, were of the correct sign, we would still be 
observing the combined effect, and as a result the variable might seem superfluous 
according to our usual criteria.

Inclusion of the price of Indian tea (PI) in the regression equation gives the following 
estimates:

       log TEA = 2.84  + 0.19 log PBZ + 0.26 log Y d  - 1.48 log PCY  + 1.18 log PI     R̄
2 = 0.56

                        (2.00)   (0.13)              (0.37)             (0.98)               (0.69)
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The empirical results now confirm our theoretical expectations. A general rule, then, is 
not to throw out automatically a variable which seems superfluous by standard criteria. 
Rather, one must first fully eliminate all possible conceptual errors that could have led to
these results. When there is a conceptual error one must not look to his data to tell him 
whether a superfluous variable is present in his regression equation.

2.11 Dominant Variables

In many empirical studies theory tells us unambiguously that a particular independent 
variable is relevant in explaining the movements of the dependent variable, but it cannot 
be included in the regression equation because it is a dominant variable. Such a variable 
dominates all the other variables in the regression and attempts to account for all 
variation in the dependent variable, leaving nothing to be explained by other variables. 
This situation frequently occurs in empirical research where the dependent variable is 
somehow functionally related to an independent variable in “fixed proportions.” For 
example, in a production function of wheat a relation is fixed between the output and the
amount of seed used. This relation is fairly constant for all observations, and when the 
amount of seed is used as an independent variable it explains all the variation in the 
dependent variable despite the presence of other variables such as capital, labor, etc.

Dominant variables present a problem of estimation techniques rather than a theoretical 
issue as to the relevance of an independent variable. As E. D. Domar puts it:

     I wonder what has happened in all these [production function] studies 
     to material inputs. If they are omitted because of the lack of required 
     data, we have an answer, even if, to my mind, a regrettable one .... It 
     seems to me that a production function is supposed to explain a produc- 
     tive process, such as the making of potato chips from potatoes (and 
     other ingredients), labor and capital. It must take some ingenuity to 
     make potato chips without potatoes.

Domar's statement cannot be contested on theoretical grounds. Empirical work, 
however, may require the deletion of primary material inputs in a production function 
simply because these inputs are so “dominant” as to cause all other included variables to
become superfluous. An example will serve to demonstrate this point.

Consider the problem of estimating the production function for Indian woolen textile 
industries. Let the production function, relating the output (Q) with the inputs—capital 
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(K), labor(L), and raw materials (M)—be

               Q=A K β 1 Lβ 2 M β 3 eε   ,                                            (2.64)

where the error terms are specified as exponential to the natural base (e). 

When the prices of all the inputs and of output are constant for all observations the 
production function may also be expressed as

                 q = α k β 1 lβ 2 mβ 3 eε  ,                                           (2.65)

where the lower-case letters now stand for the values of output and of inputs. The 
parameters (β ’s) in equations (2.64) and (2.65) are the same.

The production function for woolen textiles estimated from the data of Indian Woolen 
Textiles is

              log q = - 0.408  - 0.059 log k – 0.002 log l + 1.094 log m    R̄2 =0.997                  (2.66)
                           (0.256)  (0.043)           (0.051)          (0.065)

In a production function we expect all the β 's to be positive, but the regression equation 
(2.66) yields negative values for the estimates of β 1, and β 2. By discarding the variables 
(log k) and (log l) and re-estimating the production function we obtain

                  log q =  - 0.531  +  1.049 log m     R̄2 = 0.998            (2.67)
                                (0.232)     (0.014)

A comparison of equations (2.66) and (2.67) leads to the conclusion that capital and 
labor are superfluous variables in the production of woolen Textiles. This, however, is a 
misinterpretation of the regression equation.

In this example the raw materials variable is dominant, and is being transformed into 
output at a more or less fixed conversion ratio. The inclusion of log m as an independent 
variable leaves no room for other inputs. By deleting this variable (log m) from 
regression equation (2.66) and re-estimating the function, we obtain

           log q =   - 0.026  +  0.413  log k +  0.708 log l          R̄2 = 0.938    (2.68)
                          (1.255)    (0.161)             (0.138)

Estimates of β 1, and β 2 in equation (2.68) have proper signs and reasonable 
magnitudes.
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Even though, theoretically speaking, the production function is given by 
equation (2.65), its parameters are not empirically estimable, because of the 
dominant role played by the input (raw materials). The production functions 
given by (2.66) and (2.68) may not have the same theoretical interpretation. 
However, the regression equation (2.68) can legitimately be interpreted as 
describing a production process that uses capital and labor in transforming 
raw materials into output. The output may be viewed either as the product 
(textiles) or the amount of raw material (wool) processed by the industry. As 
long as there is one-to-one correspondence between the raw materials and the 
product, the production function given by the regression equation (2.68) is 
operationally useful—for example, in hiring and firing labor—and has not 
been harmed by the exclusion of raw materials as an input.

Some researchers have overcome the conceptual problems presented by raw materials 
by deleting them and specifying the dependent variable in a production function as value
added by manufacturing instead of total real output or as the total value of output.

The presence of dominant variables cannot be ascertained on a priori grounds. There 
may always be a possibility of substitution between the dominant variable and the other 
independent variables. For example, consider the production of wheat. It might appear 
that a farmer must always plant the same proportion of seed to wheat. Yet some farmers 
may be able to obtain the same yield by planting less seed while employing extra 
workers to scare the crows away so that none of the seed will be eaten before 
germination. Other farmers may find it more economical to let the crows have their way,
not to hire extra workers, and instead to plant more seeds. Here labor can be 
substituted for raw materials. We cannot know that the substitution took place 
until we attempt to estimate our wheat production function. Only in the case in which 
some farmers substitute labor for seed and others do not, can seed be treated as a 
nondominant variable in the regression equation. That is, if the sample shows a 
sufficient amount of substitution between the raw material and other variables, then the 
raw material will not show up as dominant.

A similar example occurs in the production of sugar, in which substitution is possible 
between capital used and sugar cane. With more capital, one can extract a larger 
percentage of sucrose from the cane.

Whether a variable is truly superfluous or is a consequence of the presence of dominant 
variables must be determined by investigation, and no rule of thumb can be given to 
solve this problem. If conceptual errors exist in the specification, these guidelines are 
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not valid. It is to be kept in mind that no statistical tool or econometric guide is a good 
substitute for theory. Guidelines indicate where to look in case of trouble, but not 
necessarily how to solve the problem.

2.12 Regression Coefficients with Wrong Signs

Often when regression coefficients are estimated the sign is opposite to that which the 
researcher believes to be true. When this happens, many researchers unfortunately drop 
the guilty variable from the regression equation with no further mention. In many cases, 
however, this is not an acceptable procedure, for a wrong sign may be a warning, inter 
alia, of incorrect definitions, specifications, or interpretations.

We frequently interpret coefficients in such a way that the estimated sign or magnitude 
appears to be different from what is expected. This may be due to an incorrect 
interpretation, which in turn may have resulted from treating an implicit form of the 
equation as the explicit form. That is, our estimating equation may be derived from 
another equation; and thus some of our explicit coefficients may be equivalent to a 
function of some unrecognized implicit coefficients.

Consider, for example, the following income determination equation for India for the 
period 1951-63:

                    Y t  = 11.20  +  0.406 I t  + 0.887 Y t−1              R̄
2 = 0.96          (2.69)

                           (11.42)    (0.455)     (0.147)

where Y is the national income in constant prices and I is investment in constant prices 
defined as the sum of savings and net capital inflow (Reserve Bank of India estimates).

If the researcher interprets the coefficient of I as the investment multiplier, he will 
immediately conclude that there is a misspecification of some sort. If he recomputes the 
regression by discarding the variable Y t−1, he obtains the following equation:

                            Y t =  77.27   +  2.997 I t        R̄
2  = 0.84 .                  (2.70)

                                    (4.40)      (0.377)

The coefficient of I in (2.70) is consistent with the a priori notions of the investment 
multiplier.

If comparison of (2.69) and (2.70) then leads to the conclusion that Y t−1 does not belong 
in the equation, the deduction is wrong. In the first place, the coefficient of I t in (2.69) 
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should not be interpreted as the long-run investment multiplier; rather, it is the impact 
investment multiplier. The coefficient of I t in (2.70) also cannot be interpreted as the 
long-run investment multiplier, for equation (2.70) violates economic theory: it implies 
that investment has a once-and-for-all one-shot effect on income.

If the researcher desires the true long-run multiplier, he must look at the steady-state 
solution of (2.69), where Y t, is assumed to be equal to Y t−1. He then obtains an implicit 
long-run investment multiplier of

                 0.406 / (1 – 0.887) = 3.6.
   
Had the researcher understood the implications of (2.69), his remarking of a “small” 
coefficient of I t would not have induced him to throw Y t−1 out of the equation.

Often the estimated results need not be conspicuous to warn of the presence of 
conceptual errors. When a signal is given in the form of a wrong sign or magnitude, the 
researcher should not ignore the warning, but rather should try to improve his 
specification of the regression equation.

A common cause of wrong signs in empirical research occurs when the variables are not
appropriately defined. Consider, for example, the demand for a commodity (Q) as a 
function of disposable income (Y), the price of the commodity (P), and the price of all 
other commodities represented by the wholesale price index (W):

               logQ t = β 0 + β 1 logY t + β 2 log Pt + β 3 log W t + ε t  .                        (2.71)

Suppose the variable Y is measured in current prices, whereas the true relation is in 
constant prices. If disposable income in constant prices is (Y/W), then the true relation is

                logQ t = α 0 + α 1 log(Y /W )t + α 2 log Pt + α 3 log W t + ε t  ,                (2.72)

which simplifies to

                 logQ t = α 0 + α 1 log Y t + α 2 log Pt + (α 3−α 1) log W t + ε t  .              (2.73)

The estimated coefficient of log W in equation (2.73) is actually a function of several 
parameters, and interpretation as if it were α̂ 3 leads to wrong conclusions.

If specification and interpretation of the coefficients are correct, a coefficient can still 
attain a wrong sign because of the sampling distribution of the estimates. If this is the 
case, we generally observe the coefficient to be not significantly different from zero 
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statistically; deletion of the variable because of its wrong sign may still lead to 
misspecification. When the coefficient is significantly different from zero statistically 
and has the wrong sign, then some aspect of the problem has not been unveiled. Instead 
of throwing away the variable, it is better to retain it in the equation so that other 
researchers may be able to explain the apparent inconsistency. When the variable with 
a wrong sign is superfluous, in the sense that its deletion does not affect the other 
coefficients and does not decrease R̄2, then this problem is not serious.

2.13 Multicollinearity

In some cases, even though a theory clearly indicates the independent variables in 
explaining movements in a dependent variable, it may not be possible to interpret some 
of the parameters of the regression equation.

Consider the following example:

                   St = β 0 + β 1 Lt + β 2 R t + β 3 X3 t + β 4 X 4 t + ε t  ,                    (2.74)

where S is sales revenue, L is the number of left shoes sold, R is the number of right 
shoes sold, and X3 and X4 are other products. The revenue comes from selling both the 
right and the left shoes, therefore each has legal claim in explaining the movements in 
sales revenue; but then some of the parameters in equation (2.74) have no meaningful 
interpretation.

The parameter β 1, for example, is the partial derivative of S with respect to left shoes, 
keeping all the other variables, including right shoes, constant. Such a situation is never 
observed because shoes are always sold in pairs. Even if the parameter values β 1, and β 2 
in (2.74) were somehow obtained, they could not be interpreted. This problem arises 
whenever there is a fixed relationship between independent variables.

In many empirical problems the basis of interconnection may not be so conspicuous, but
even in the absence of any theoretical reason the data may be such that a one-to-one 
relation between the variables is present. Whatever the source of the fixed relation, the 
problem can be averted by redefining the variables in such a way as to make the 
parameters subject to interpretation. 

For example, in the above case instead of specifying the independent variables as left 
and right shoes separately, a new variable defined as “a pair of shoes” may be used. The 
equation then becomes
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                      St = β 0 + β Pt + β 3 X 3 t + β 4 X 4 t + ε t  ,                                  (2.75)

where P is the number of pairs of shoes sold.

Now consider the reverse case. In many situations, even though theoretically a technical 
relation exists between independent variables, the observed data may not exhibit any 
such relation. Consider, for example, the following hypothetical equation to explain 
long-run price levels:

            P t = β 0 + β 1 Ct + β 2 DDt + β 3 X 3 t + β 4 X 4 t + ε t  ,                          (2.76)

where P, C, and DD are price levels, currency, and demand deposits, respectively. 
Suppose a law requires a minimum currency reserve ratio (C/DD). The researcher may 
expect a technical relation between C and DD; but if the banks in fact maintain free 
reserves he does not observe any such technical relation in his data. In such cases the 
parameters of equation (2.76) do have a valid interpretation. Regardless of what might 
have been expected a priori, the technical relation between independent variables poses 
problems of interpretation only when it appears in the data.

The presence of any fixed relation between independent variables presents a problem 
called multicollinearity.

Although researchers show a growing tendency to blame all econometric problems on 
this demon, we suggest that it may often be largely a theoretical nightmare rather than an
empirical reality.

The applied econometrician does need some guidelines in order to detect the presence of
multicollinearity in his data, however, and a few indicators are available. A standard rule
that some investigators have been using calls for inspection of the simple correlations 
among the independent variables. One should realize that simple correlations are only 
elements of the entire correlation matrix and, hence, may or may not contribute to 
problems of multicollinearity. One should not, a priori, rule out estimation of any 
regression equation because of high simple correlations between any two independent 
variables.

Consider, for example, the following regression, which attempts to explain heartbeat (Y) 
among cardiac patients in a given hospital by the length of the right leg (X1) and the 
length of the left leg (X2):
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             Y t = β 0 + β 1 X 1t + β 2 X 2 t + ε t  .                                  (2.77)

If the researcher computes the simple correlation between X1 and X2 he will observe 
“high” correlation; he therefore suspects multicollinearity and hesitates to estimate the 
equation. If another researcher were to look at the same equation with X1 and 
X2*( = X2 - X1) he would see a “low” correlation between X1 and X2* and conclude 
that multicollinearity was not a problem. But the implicit estimates of β 1 and β 2 from 
(2.77) will be identical whether the second independent variable is X2 or X2*. This is so 
because the conditions imposed on the residuals for estimation in either case are 
implicitly the same.

The researcher would get a meaningful regression equation by including X1 and X2. If 
one or the variables were deleted, he would obtain nonsensical results. Because of the 
asymmetry of the heart, its beat is a function of difference in the length of the legs and 
not of the length of either. By including both variables, the researcher is implicitly 
allowing the difference in the two variables to enter the regression equation as an 
independent variable.

When one independent variable is a linear function of the other, then the ordinary least 
squares estimation procedure fails. For example, in equation (2.77) the estimates of the 
three parameters β 1, β 2 and β 3 are obtained by solving the three constraints on the 
residuals:
                      Σe = 0  ,                          (2.78)
                      Σ x1 e = 0 ,                        (2.79)
                      Σ x2 e = 0 .                        (2.80)

A nontrivial solution exists only when the above three constraints are independent. 
When a linear relation exists between X1 and X2, the second and the third equations are 
not independent. Hence, when X2 is a linear function of X1 the ordinary least squares 
solution of β̂ 's cannot be obtained. This property may be used in detecting the existence 
of fixed relations between independent variables.

When a regression equation has several parameters to be estimated, the least squares 
algorithm for β̂  is usually expressed in matrix notation as

                            β̂ = (X ' X )−1 X ' Y   .                              (2.81)

When a linear relation exists between independent variables, then the matrix (X'X) is 
singular and has no inverse. The applied econometrician rarely inverts the matrix in one 
step. All algorithms obtain the inverse by “pivoting- in” (including) one variable at a 
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time. When a variable being pivoted-in is a linear function of already pivoted-in 
variables, the diagonal element of the matrix becomes zero, or nearly zero, when 
computational errors are present. Such variables can be detected and skipped with no 
difficulty. Most computer programs check for zero elements along the diagonal at each 
step and notify the researcher of the presence of any linear relation. These problems can 
easily be remedied by appropriately redefining the independent variables.

Sometimes the computational errors and errors of measurement can be large enough to 
cause a nonzero diagonal element in the matrix. In such cases the regression coefficients
will remain fairly stable before and after the variable is introduced, but the standard 
errors of all the coefficients will increase beyond reasonable limits following its 
introduction. When X 1, and X 2 are collinear, X 2 will turn out to be superfluous when X 1 is
already in the regression, and vice versa. The R̄2 invariably goes down when the second 
variable is added to the equation.

Some researchers attribute even a slight change in standard errors to multicollinearity. 
This practice should be discouraged. Consider, for example, the two estimated equations

                      y t = β̂ 1 x1t + e1 t  ,                                                     (2.82)
                      y t = ~β 1 x1t + ~β 2 x2t + e2 t,                                         (2.83)

where both were estimated by ordinary least squares.

The estimates β̂ 1 and ~β 1 have two different theoretical distributions with different 
variances (see p. 56):

                      V (β̂ 1) = σ ε
2/ Σ x1

2 ,                                                      (2.84)

                      V (~β 1) = σ ε
2/ Σ x1

2(1−r x1 x2
2 )  .                                       (2.85)

When correlation between the two independent variables (r x1 x2) differs from zero, then 
the variance of ~β 1 is larger than that of β̂ 1.

In some situations the correlation between the independent variables may be close 
enough to unity to make the variance of the estimate extremely large. In such cases the 
estimate is not “reliable.” When the (unknown) standard deviation of the estimate is very
large relative to the mean of the distribution, the researcher may discard the variable to 
improve the mean square error of the other estimates. He should remember that the 
theoretical variance of an estimate depends not only on the correlation between the 
independent variables but also on the variation of the independent variables; for 
example, the variances of both the estimates β̂ 1 and ~β 1 decrease with Σ x1

2.
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Even though the correlation between the independent variables is “nearly” unity, the 
variation in the independent variable Σ x1

2 may offset the term (1- r x1 x2
2 ) and make the 

theoretical variance very small. Since the value of Σ x1
2 increases with the sample size, 

the problem of multicollinearity, except in the sense of a fixed relation between the 
independent variables as in the example of right and left shoes, does not usually arise in 
large samples.

When multicollinearity is present, the exclusion of one of the variables from the 
regression equation does not decrease the explanation of the dependent variable.

 Consider the equation

                       Y t = β 0 + β 1 X 1t + β 2 X 2 t + β 3 X3 t + ε t .

Let there be a linear functional relationship between X 1 and X 3

                       X 3t = a + b X 1 t  .                                                    (2.87)

Suppose that instead of (2.86) the following regression equation is estimated:

                         Y t = β̂ 0 + β̂ 1 X 1t + β̂ 2 X 2 t + e t .                         (2.88)

By using equation (2.50), we have

                           E( β̂ 1) = β 1 + β 3 . b  ,                                          (2.89)

                          E( β̂ 2) = β 2  .                                                        (2.90)

Since X 3 can be defined in any arbitrary units, we define the units such that b = 1, and 
we have equation (2.89) as

                          E( β̂ 1) = β 1 + β 3 .                                                (2.91)

The entire influence of the variable X 3 is captured by the included variable, and the other
coefficients are totally unaffected.

When the researcher is interested in explaining the movements of the dependent 
variable, or in predicting the values of Y, then it makes no difference whether the 
variable X 3 is in the regression or not. When his objective is to estimate the coefficients 
of the other independent variables, for example β 2, then again exclusion of the variable
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X 3 will not damage the estimate. To isolate the influences of X 1 and X 3 however, 
becomes a computationally impossible task. This is a fortuitous situation, for even if the 
researcher were given the empirical estimates he would have no way of interpreting 
them.

The problem of which variables are to be included in a regression equation is a major 
problem in applied econometrics. Rules are helpful, but they cannot make decisions for 
the applied econometrician.
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