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                                                   Chapter  6

                                            Hypothesis Testing

Empirical research is often called for in testing a verifiable statement.  When faced by 
several theories, the researcher interested in empirically testing which of them is 
appropriate in a given situation will apply the tools of Hypothesis Testing.

To understand the relevant concepts and their proper use, let us consider a situation in 
which there are two theories. The researcher wants to choose the appropriate one for the 
policy purposes of his given situation. There may be several ways of deciding which of 
the theories is appropriate. One is by the criterion of empirical relevance. If the real 
world, as observed by measured facts, proves to be inconsistent with a theory, then the 
researcher may decide to discard the theory.

To make effective use of empirical investigation in this way, one must be able to 
distinguish one theory from the other empirically. If both predict the same observable 
phenomena, there is no way of distinguishing between them; observed relations may 
lead to the conclusion that both theories are appropriate or both inappropriate. Reaching 
such a conclusion is simply a redundant exercise.

Only when the two theories disagree on an observable relation can empirical research 
determine the appropriateness of a given theory. Typically, the researcher should 
construct a statement regarding some observable phenomenon in such a way that one 
theory implies that the statement is false and the other implies it is true. By empirical 
verification the researcher can then determine which of the two contesting theories is 
appropriate to his needs.

When the testing of two theories has been thus reduced, the statement is rewritten in the 
terminology of statistics as two hypotheses: one declaring that the statement is true, 
referred to as the Null hypothesis, and the other declaring that the statement is false, 
referred to as the Alternative hypothesis. In this terminology only one of the two 
hypotheses can be true in a given situation. Prior to any testing the researcher must have 
both the Null hypothesis and the alternative: hence the starting point in any test is a clear
statement of the contrasting hypotheses and their relation to the corresponding theories.  
The researcher has need to test these as his only way of knowing which is the truth.
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Having clearly stated the objective of his empirical investigation in the form of the Null 
and Alternative hypotheses, the researcher now turns to a test criterion—that is, how he 
intends to verify which of the two statements is the truth. He may set up a rule in such a 
way that if its terms are met by the data then he will accept the Null hypothesis as the 
truth, otherwise he will accept the Alternative.

When a rule is based on a statistic it may possibly give a wrong answer. When the Null 
hypothesis is in fact true, the rule may indicate that it is false, which is clearly a wrong 
answer. This is called the Type I error. Though the researcher would like to have a rule 
that does not give wrong answers, it is hard to find one which always performs correctly.
However, one may select a rule that gives right answers more frequently than others. By 
choosing such a rule the researcher can be confident that if it is used repeatedly on 
different occasions he will at least in a majority of the cases be getting correct answers, 
even though he does not know when he is getting wrong answers.

Any rule may give a wrong answer of the opposite kind: when the Null hypothesis is 
actually false the rule may indicate that it is true. This is called the Type II error. Notice 
that the Type I error and the Type II error are different concepts. Any rule may give both
kinds of wrong answers. Ideally, the researcher would prefer a rule that has the 
minimum chance of committing both of these errors. But unfortunately rules with a 
smaller probability of Type I error usually have a larger probability of Type II error and 
vice versa.

The problem of choosing a rule on the basis of both Type I and Type II errors is 
infrequent in applied econometrics, because we seldom know the probabilities of both of
these two errors corresponding to any rule. It is true that their probabilities may be 
computed on the basis of the theoretical distributions of the estimates on which the rule 
is based, provided the Null and the Alternative hypotheses clearly state specific values 
of the corresponding parameters. But usually in applied econometrics only the Null 
hypothesis is specific, and the Alternative is usually the negation of the Null hypothesis 
with no specific values assigned to the respective parameters. In such cases it is 
possible to obtain the probability of the Type I error but not of the Type II error.

When the researcher rejects a Null hypothesis having a probability of Type I error of, 
say, 5 percent he is aware that his rejection on the basis of that rule will be wrong 5 
percent of the time. Conversely, he is confident that he will get the correct answer in 95 
percent of the cases. In other words, the rule is said to have a  “95 percent level of 
confidence.”
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Unless the researcher knows the probability of the corresponding Type II error of a rule, 
he does not know the probability of getting a right answer when the rule indicates that 
the Null hypothesis should be accepted. It may be that the Null hypothesis is in fact 
false. That is, without knowing the probability of the Type II error the researcher cannot 
assess the chances of his getting the correct answer when the rule indicates acceptance 
of a Null hypothesis.

Since the Alternative hypothesis is usually the negation of the Null hypothesis rather 
than a statement regarding the specific values of parameters, the researcher knows the 
chances of obtaining a wrong answer when he rejects the Null hypothesis but not when 
he accepts. To maintain this distinction in reporting results, the applied econometrician 
either “rejects” or “does not reject” the Null hypothesis, rather than “rejecting” or 
“accepting” it. Thus “not rejecting” a Null hypothesis does not necessarily imply its 
acceptance.

The rule for rejecting or not rejecting a Null hypothesis on the basis of empirical 
research is usually based on some test statistic (call it t) computed from the data. 
Typically, a rule rejects the Null hypothesis when a test statistic exceeds a specified 
value, t c , called the critical value. When the statistical distribution of the test statistic is 
known, then the researcher can compute the probability of the statistic exceeding the 
critical value when the Null hypothesis is true, which is the probability of committing 
the Type I error corresponding to the rule.

6.1 Test Based on One Regression coefficient

When the researcher wants to verify whether a theory is relevant to a given situation, he 
will want to test a Null hypothesis on the basis of data relating to the situation. 
Sometimes it is possible to formulate the Null hypothesis in the form of a specific value 
of a parameter. For example, consider a theory which states that, given the level of 
profits (P), investment (I) in an industry does not change with the sales (S) of that 
industry. This Null hypothesis may be readily translated into a specific value of a 
parameter by expressing the relation between investment and profits as a linear 
regression equation:

                                I t = β 0 + β 1 St + β 2 Pt + ε t .                                  (6.1)

The Null hypothesis implies that the parameter value of β 1  is zero. The Alternative 
hypothesis may be stated simply as: the Null hypothesis is false. In the standard notation
the Null hypothesis is expressed as
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                H N : β 1 = 0           H A :  H N  is false.                                        (6.2)

Since specification of the objective of a test is complete only when the Null and 
Alternative hypotheses have been clearly stated, expression (6.2) is usually referred to as
the Null hypothesis instead of the more accurate term, Null and Alternative hypotheses.

In this particular example, the rule to test the Null hypothesis against the Alternative is 
based on a statistic called the t-ratio, defined as

                            t=β̂ 1 / st. error of β̂ 1.                                                   (6.3)

Since the estimate β̂ 1 and its standard error are obtained from the results of the least 
squares procedure, the t-ratio has a statistical distribution. When the Null hypothesis is 
true (β 1 = 0) and the error terms (ε ' s) are generated by a normal distribution, the t-ratio 
follows the “Student’s t” distribution, with (T - K) degrees of freedom, where T is the 
number of observations and K is the number of parameters estimated (including the 
constant).

The theoretical distribution of the t-ratio provides the probability that this statistic will 
exceed a specified value, say, t c, When the Null hypothesis is true, the probability of the 
statistic t-ratio exceeding a set critical value t c , for various numbers of degrees of 
freedom, is furnished in most textbook.

Since the distributional properties of the t-ratio are known, we may set up the rule for 
testing the Null hypothesis on the basis of this statistic. The rule may be set so that 
whenever the t-ratio exceeds a set critical value, t c, the Null hypothesis is rejected and 
not otherwise. Under this rule, the probability of a Type I error is solely the probability 
of t exceeding the value t c, when the Null hypothesis is actually true. The critical value
 t c, may be chosen so that the level of confidence associated with it is acceptable.

Note that the researcher cannot forever increase the value of t c to reach higher levels of 
confidence, because by so doing he would be increasing the probability of committing 
the Type II error associated with the test.

The Null hypothesis is false when (β 1 > 0) and also when (β 1 < 0). When the Alternative
hypothesis, (β 1 > 0), is in fact true, we expect the t statistic to be positive; hence, the rule
would be: “Reject the Null hypothesis when t exceeds the critical value t c” where t, is a 
positive quantity. Testing a Null hypothesis against an Alternative that assigns values to 
the parameter which are greater than the value implied by the Null hypothesis—for 
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example in (6.2), (β 1 > 0)—is called the right-tail test. Similarly, when the alternative 
hypothesis, (β 1 < 0), is in fact true, the t statistic will be negative and it will be 
inappropriate to use the rule of t exceeding a positive quantity. When t is negative and 
large in magnitude, it offers evidence in favor of the Alternative. Therefore, the test rule 
for the Alternative hypothesis (β 1 < 0) should be different from that of the alternative (β 1

> 0). 

When the Alternative assigns values to the parameter which are less than the parameter 
value implied by the Null hypothesis, the test is called the left-tail test; the rule is, then, 
“Reject the Null hypothesis when t is smaller than t c” where t c is a negative quantity. 

When the Alternative hypothesis includes both the right tail and left tail tests, both these 
rules should be applied; hence, the test rule may be stated as, “Reject the Null 
hypothesis when the absolute value of the t statistic exceeds the value t c in magnitude.”  
Such a test is called the two-tail test.

  Note that the probability of committing a Type I error in the case of a two-tail test is 
twice as much as in either of the one-tail tests for a given critical value t c.

In our example (6.1), (6.2) we shall choose a 95 percent confidence level as acceptable. 
The critical value corresponding to 12 degrees of freedom (15 observations and 3 
parameter estimates) may be obtained from the Table as 2.179. The rule for testing is, 
then, that if the computed statistic exceeds the value 2.179 we reject the Null hypothesis,
but not otherwise.

The estimated regression equation (6.1) for the Indian engineering data is

                I t   = - 82.518  + 0.084  St  + 0.048  P t          R
2 = 0.98            (6.4)

                          (98.112)   (0.020)      (0.418)

In this case, β̂ 1 is 0.084, and its standard error is 0.020; so the t-ratio is

                           t = 0.084 / 0.020 = 4.2.                                                  (6.5)

Since the computed t-ratio satisfies our test rule, we reject the Null hypothesis. 

Hence, the Indian engineering data provide enough evidence for rejecting the 
Null hypothesis that “sales do not cause movements in investment.” We are 95
percent confident that this test procedure will yield the correct answer when 
used in repeated samples.
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This test procedure is based on one parameter and may be used for any specific value of 
the parameter and not necessarily zero as in the above example. 

Consider the Null hypothesis

                     H N : β 1 = 0.02           H A :  H N  is false.                                 (6.6)

In this case the test statistic is defined as
   
                      t = (β̂ 1 - 0.02) / standard error of β̂ 1 .                                    (6.7)

When the Null hypothesis is true and error terms are normally distributed, the 
statistic defined by (6.7) follows the “Student’s t” distribution with (T - K) 
degrees of freedom. Once the distribution of the test statistic is known, the 
probability of committing a Type I error is known; hence, so are the critical 
value and the test rule.

In general, this test procedure may be used for any of the parameters of a 
regression equation, provided that the test involves only one parameter. Let the 
regression equation in the general case be

              Y t = β 0 + β 1 X 1t + β 2 X 2 t + ... + β k X kt + ε t ,                    (6.8)

and let the Null hypothesis be based on the i-th parameter β i as

                H N : β i = μ            H A :  H N  is false,                                             (6.9)

where μ is the chosen constant [0 in (6.2); 0.02 in (6.6)]. 

The test statistic is defined as

                       t = (β̂ i - μ) / st. error of β̂ i .                                                  (6.10)

When the Null hypothesis is true and the errors are generated by a normal distribution, 
the t statistic follows the Student’s t distribution with the appropriate degrees of 
freedom.
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6.2 Consequences of Biased Estimates

In the preceding section the conventional t-statistic has been used as the test criterion. 
This statistic follows Student's t distribution only when the estimated regression 
equation is the truth and when errors are normally distributed. In many econometric 
investigations these assumptions need not hold, and the researcher will be interested in 
knowing the consequences of their violation. Though he can reasonably assume that the 
errors are normal, he may suspect that the estimated regression equation is not the truth. 
When such is the case, the resulting estimates of the parameter and the estimates 
of the variances may be biased, in which case the distribution of the statistic would be 
altered. In a typical econometric problem the researcher may have a misspecification of 
some sort which introduces bias in the estimate β̂ i and also in the estimate of the 
variance of β̂ i.

To understand the concepts let us consider an extremely simple situation. Suppose that 
the Null hypothesis (6.9) is true. Let the estimate of the true regression equation be β̂ i, 
which is assumed to be unbiased. The t-statistic is computed as

                            t = (β̂ i−μ)/√ V̂ (β̂ i)  ,                                           (6.11)

where V̂  is the estimate of the variance of β̂ i and μ is the chosen value of β i under the 
Null hypothesis. The t-statistic has zero mean and follows Student's t distribution. The 
probability of Type I error corresponding to a specified critical value t c, is given by the 
shaded area in Figure 6.1.

                            Figure 6.1. Distribution of t and t* for the case of Positive Bias

Suppose there is another estimate—say, β̂ i
* —which is a biased estimate of β i. When the 

Null hypothesis (6.9) is true,
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                            E( β̂ i
*) = β i+d = μ+d ,                                         (6.12)

where d is the amount of bias, which may be positive or negative. If the researcher uses 
the biased estimate β̂ i

* instead of β̂ i in computing the t-statistic in (6.11), the distribution 
of t changes. Let the t-statistic based on β̂ i

* be called t *. Then

                         t * = (β̂ i
*−μ) / √ V̂ ^(β i)  .                                           (6.13)

The   t * - statistic has a mean value of d whereas t has a mean value of zero. We shall 
suppose for purposes of exposition that only the mean of the distribution is affected by 
the substitution of β̂ i

* for β̂ i in equation (6.11). The distribution of t * for a positive value 
of d is given in Figure 6.1. The distribution of t * for a negative value of d can be drawn 
similarly to the left of the t distribution, as shown in Figure 6.2.

When the researcher uses the same critical value t c for the test rule, the probability of 
Type I error will not be the same for the use of β̂ i

* as for the use of β̂ i in computing the 
test statistic. The probability of Type I error is the probability of the test statistic 
exceeding the critical value; as may be seen from Figures 6.1 and 6.2, this differs for the 
distribution of t and of t *.

When the researcher is not aware that he is using β̂ i
*, he may be under the impression 

that the probability of Type I error associated with his test criterion is the shaded area in 
Figure 6.1, whereas the implied Type I error is that corresponding to the t * distribution. 
This changes the probability of Type I

                   

                            Figure 6.2.  Distribution of t and t* for the Case of Negative Bias

error. In comparing the probability of actual Type I error (based on t *) and the 
probability of theoretical Type I error (based on t), it can be seen that the difference 
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between them increases with the value of d for the right-tail test and decreases for the 
left-tail test. This result is symmetric for negative values of d.

The consequences of bias in only the regression estimate is to underspecify the 
probability of Type I error implied by the test criterion for the case of positive bias and a
right-tail test or of negative bias and a left-tail test. When the bias is small, the 
theoretical and the actual Type I error may be so close that the difference is of no real 
consequence. When the researcher suspects that his estimate is biased, he may opt for a 
conservative choice of the critical value to allow for such discrepancy. The situation 
becomes crucial only when bias in the estimates is of such size that the Null hypothesis 
would be rejected under the theoretical t distribution but not under the t * distribution. 
Should such a situation arise, the researcher is advised to seek more information or to 
try to reduce the bias of his estimate by inclusion of proxy variables or by other means.

6.3 Consequence of Biased Estimates of 
   Coefficient Variance

Now let us turn to the situation in which V̂ (β̂ i), the estimate of variance of β̂ i, is biased. 
Once again, for the sake of exposition, let us suppose that instead of V̂ (β̂ i) the researcher
uses a biased estimate in equation (6.11) to compute the t-statistic. Let the statistic with
V̂ /(β̂ i) be
                        t / = (β̂ i−β i) / √ V̂ /(β̂ i)  .                                            (6.14)

  
The t / is centered around zero because the estimate β̂ i is assumed to be unbiased. When
V̂ /(β̂ i) is an overestimate of V̂ (β̂ i), the variance of t' will be smaller than that of t. 
Similarly, when V̂ /(β̂ i) is smaller than V̂ (β̂ i), the variance of t / will be larger than that of 
t.

The distributions of t and t / are presented in Figure 6.3. The critical value is t c. The 
probability of a Type I error corresponding to t c for a right-tail test is given by the areas 
under the respective distributions to the right of t c. When V̂ /  is larger than V̂ ; a frequent 
case in linear regressions, the probability of a Type T error associated with t / is smaller 
than that associated with t. When the researcher is not aware of the upward bias in the 
variance of his estimate, he may believe that he is testing with a lower level of 
confidence than is actually the case.
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                             Figure 6.3. Distribution of t’ for various estimates of V̂ (β̂ i)

In a practical situation, however, he may have bias both in his regression estimates and 
in his estimate of variance. In a right-tail test, downward bias in the parameter estimate 
and upward bias in the estimate of variance tend to indicate a probability of Type I error 
larger than the actual probability. When the researcher rejects a Null hypothesis at the 
specified probability of Type I error, he will be rejecting it as well at other lower values, 
hence there is no problem. His test criterion is more “powerful” than he believes it to be.

When the bias in the estimate is positive and bias in the estimate of variance is also 
positive, the first tends to overstate and the other to understate the level of confidence. 
This also does not cause serious problems unless the test result is marginal: that is, for 
example, unless the researcher would reject the hypothesis at the 95 percent but not at 
the 99 percent level of confidence. In such a situation an applied econometrician cannot 
be sure whether the actual level of confidence is the same as the theoretical. If he rejects 
the Null hypothesis at the 95 percent level on the basis of the theoretical level of 
confidence, he is completely ignoring the consequences of bias in his estimates.

Once having an idea of the extent of bias, at least whether the bias is considerable or not,
a researcher may conjecture the maximum and minimum levels of confidence associated
with a critical value t c. If he then rejects the Null hypothesis at the minimum actual 
probability of Type I error, he can be confident that, even though, the estimates are 
biased, his test is conclusive.

So far we have presented the consequences of bias in the parameter estimates and in the 
estimate of variance. Now let us consider some typical problems in econometrics in 
order to study the direction of such bias.
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Let the true relation between the economic variables be

                              y t = β 1 x1t + β 2 x2t + ε t                                                  (6.15)

where the variables are deviations from their respective means. By misspecification the 
researcher estimates the following regression equation:

                              y t = β̂ 1 x1t + et .                                                                (6.16)

We have already shown that the estimate β̂ 1, is biased and that the expression for bias is

                       E( β̂ 1) = β 1 + β 2b21 .                                                               (6.17)

To study the nature of bias in the estimate of variance of β̂ 1, let us consider the bias in 
the estimate of variance of the error term. This variance is usually estimated from the 
sum of squares of the residuals.

The residual corresponding to the t-th observation is

                              e t = y t−β̂ 1 . x1 t .                                                                     (6.18)

By substituting the true value of y t given by equation (6.15) and the ordinary least 
squares estimate of β 1, in equation (6.16) we obtain

                             e t = β 2 x2t−β 2 b21 x1t + ε t−x1 t Σ x1 tε t / Σ x1t
2  .                            (6.19)

When both sides of equation (6.19) are squared and the expected value of the summation
over all the observations is taken,

                    E(Σet
2) = σ 2(T−1) + β 2

2 Σ x2
2(1−rx 1 x 2

2 ) .                                      (6.20)

The estimate of variance of the error term (e) based on the ordinary least squares 
residuals is biased whenever the equation is misspecified. This bias is nonnegative; that 
is, the variance of the error term is always overestimated (unless, of course, β 2 = 0 or
r x1 x2

2  = 1). The extent of this bias depends on the coefficient of and the sample variance 
of the left-out variable. It also depends on the correlation between the left-out and the 
included variable (r x1 x2). 

Notice that as this correlation increases from zero to unity this bias goes from its 
maximum to its minimum value.
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When the left-out variable is perfectly correlated with the included variable, r x 1 x2= 1, the 
included variable captures all the influence of the left-out variable in its coefficient, thus 
leaving no part of the left-out variable in the error terms. Since the residuals then 
represent only the error terms, and not any part of the left-out variable, the estimate of 
variance of errors computed from the residuals is unbiased. Note that these results are 
derived under the assumption that the x's are held constant in repeated trials.

6.4 Test on a Linear Function of Parameters

Often the researcher is interested in testing a Null hypothesis on a linear function of the 
parameters rather than on the individual parameters. For example, he may want to test 
for returns to scale in the context of a Cobb-Douglas production function.

We shall study the general case of testing a linear combination of parameters in the 
linear regression

                          y t = β 1 x1t + β 2 x2t + ... + ε t                                      (6.21)

Let the Null hypothesis be

             H N :δ=c1 β 1+c2 β 2+.. .         H A : H N  is false,                                 (6.22)

where δ , c1 , c2 ... are specified (chosen) constants.

When the researcher is testing for constant returns to scale with a Cobb-Douglas 
production function,  δ  = 1 and all of the c's = 1, so that the Null hypothesis (6.22) 
becomes
                           H N : 1 = β 1+β 2+...+β k                                                 (6.23)

where there are k factors of production and the variables are in their logarithmic form.

The test statistic may be designed as

                             d = c1 β̂ 1 + c2 β̂ 2 + .. . .                                               (6.24)

When the β̂ 's are unbiased estimates,

                  E(d) = c1 β 1+c2 β 2+ ... = δ                                                    (6.25)

The variance of the statistic d is
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       V (d) = c1
2V (β̂ 1)+c2

2 V ( β̂ 2)+ ...+2 c1 c2 COV (β̂ 1 , β̂ 2)+.. . ,               (6.26)

where COV stands for covariance between the estimates β̂ 1 and β̂ 2. In linear regression 
models the covariance term is usually nonzero and plays a prominent role in the testing 
of the hypothesis.

When the error terms are normally distributed the d-statistic follows a normal 
distribution with mean and variance given by (6.25) and (6.26). The d-statistic (6.24) 
may be standardized by the following transformation:

                                 z = (d−δ )/√V (d) .                                                  (6.27)             

The z-statistic follows the standard normal distribution with mean zero and variance 1.

The researcher does not know V(d) because it involves V(β̂ i), which is generally 
unknown. When an estimate of V(β̂ i) on the basis of the ordinary least squares 
estimation procedure is used instead of the true V(β̂ i) in computing V(d), the resulting 
statistic follows Student's t distribution with (T - K) degrees of freedom, where T is the 
number of observations and K is the number of parameters estimated by equation (6.21),
including the constant term. When V(d) is replaced by V̂ (d), the z-statistic may be 
written as a t-statistic

                           t = (d−δ)/√V̂ (d) .                                                        (6.28)

When the researcher has theoretical information which says that the Null hypothesis is 
true, then there is of course no point in testing. The researcher may incorporate the truth 
into his estimation procedure by estimating the production function such that 1 = β̂ 1+β̂ 2. 
This can be accomplished by writing the regression equation under the truth as

            log q = β̂ 0+β̂ 1 log l+(1−β̂ 1)log k+e .

By rearrangement of terms

         (log q−log k) = β̂ 0+β̂ 1(log l−log k)+e

Estimating this equation with y'(= log q - log k) as the dependent variable and 
x'(= log l - log k) as the independent variable yields β̂ 1 under the restriction of constant 
returns to scale. The estimate β̂ 2 is obtained as 1- β̂ 1 .
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Now let us turn to the production function in Indian woolen textiles to test whether there
are constant returns to scale. The regression equation is

                 log q = β 0+β 1 log l+β 2 log k+ε  .                                              (6.29)

The Null hypothesis may be stated as

                H N :  1 = β 1  + β 2          H A :  H N  is false.                                    (6.30)

The regression equation estimated from the data is

           log q = 1.652  +  0.708 log l  +  0.413 log k           R2 = 0.947 .         (6.31)
                       (0.154)   (0.138)            (0.161)

The value of d (= β̂ 1 + β̂ 2) is 1.121, and the estimate of variance of d is

         V̂ (d) = V̂ (β̂ 1)+V̂ (β̂ 2)+2 ^COV (β̂ 1 , β̂ 2)
                    = 0.0189 + 0.0260 + 2 (-0.0013) = 0.0423 .                              (6.32)

The t-statistic computed from d is

             t  =  (d – 1) / √ V̂ (d) = 0.121 / 0.2058 = 0.588 .                                (6.33)

The t-statistic in equation (6.33) follows the Student's t distribution with 12 degrees of 
freedom (15 observations minus 3 parameter estimates).

The critical value corresponding to the 95 percent confidence level is 2.201. the test rule 
is that we reject the Null hypothesis whenever the computed t-statistic exceeds the 
critical value 2.201 in magnitude. The computed t-statistic does not satisfy the rule. 
Therefore we do not reject the Null hypothesis that there are constant returns to scale in 
the woolen textile industry in India.

6.5 Simultaneous Test on Several Parameters

In some situations the theory may make a statement regarding several parameters at the 
same time. The theory is true only when the entire statement is true and not when just a 
part of it is true. In such a case the researcher has to treat the statement as a whole and 
should not try to test parts of it separately. For example, a theory may state that the 
parameters β 1 and β 2 in a regression equation take the specific values β 1 = μ1 and β 2 = μ2

If the researcher should test null hypotheses separately on  β 1 and β 2, he would be 
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misinterpreting the implications of the theory, that both of them must be simultaneously 
true.

Consider, for example, the case of tea imports into the United States. Let a theory state 
that the imports of Ceylonese tea do not depend on the price of Indian tea and that the 
price elasticity of Ceylonese imports is unity. This theory makes a statement regarding 
the price sensitivity of Ceylonese tea imports with respect to both Indian price and 
Ceylonese price. Hence, we cannot treat the statement as two different parts and test 
them separately.

Let the demand for Ceylonese imports be:

        logTEA = β 0+β 1 log Pcy+β 2 log PI +β 3 log Pbz+β 4 log Y +ε  .         (6.34)

The Null hypothesis may be posed in the general framework as

           H N :β 1=μ 1  and β 2=μ 2         H A : H N  is false.                                (6.35)

In the context of our example, μ1 = -1 and μ2 = 0.

The required test statistic may be based on the two separate values for the sum of 
squares of the residuals under the null and under the alternative hypotheses. The 
Alternative hypothesis implies no conditions on the parameters; hence, the residual sum 
of squares under the Alternative hypothesis, RSS(H A), using ordinary least squares 
estimation, is the minimum value of sum of squares.

When the regression equation is estimated under the presumption that the Null 
hypothesis is true, the residual sum of squares, RSS(H N), will be larger than the 
RSS(H A). Since the Null hypothesis implies some specific values for the parameters, 
there is no need for estimating these parameters. In estimating the regression under the 
Null hypothesis the researcher is forcing the estimation procedure, so that the estimates 
are, in fact, the true values of the parameters under the Null hypothesis. This necessarily 
increases the residual sum of squares, because the least residual sum of squares is 
obtained under no restrictions.

The increase in the residual sum of squares due to imposing the condition that the Null 
hypothesis is true provides a basis for the test. When the Null hypothesis is actually true,
then imposing the condition that the Null hypothesis is true should not increase the 
residual sum of squares. Because of sampling fluctuations we cannot hope to obtain a 
zero increase; hence we should test to see whether the increase in the residual sum of 
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squares is significantly different from zero.

The increase in the sum of squares depends on the number of observations, on the 
number of restrictions implied by the Null hypothesis, and also on the units of 
measurement of the dependent variable. Since we want the test statistic to be 
independent of these factors we shall standardize the increase in the residual sum of 
squares as

                      F=
[RSS(H N)−RSS(H A)]/n

RSS(H A)/(T−K )  .                                       (6.36)

The numerator shows the increase in the residual sum of squares due to the restrictions 
imposed on the parameters, adjusted for the number of restrictions n. As the number of 
restrictions increases, the difference between RSS(H N) and RSS(H A) also increases. By 
dividing by the number of restrictions we are, in a way, correcting for this.

The denominator is the residual sum of squares based on (T - K) degrees of freedom; 
hence, it is divided by the number of degrees of freedom. Since the numerator and the 
denominator are in the same units, namely the square of the dependent variable, even if 
the unit of measurement of the dependent variable changes we still obtain the same 
value for the statistic.

The F-statistic depends crucially on two parameters: the number of restrictions (n), 
called the number of degrees of freedom in the numerator, and the degrees of freedom of
the regression equation when no restrictions are imposed on the estimation, called the 
number of degrees of freedom in the denominator. As the number of degrees of freedom 
change in the numerator and the denominator, the distribution of the F-statistic changes 
when the Null hypothesis is true. Under the assumption that the errors are normally 
distributed, the theoretical properties of the F-statistic follow Snedecor's F-distribution 
with the corresponding number of degrees of freedom of the numerator and the 
denominator.

The researcher may specify an arbitrary critical value for the F-statistic as F. When the 
statistic exceeds the critical value the researcher rejects the Null hypothesis. The 
probability of Type I error associated with the critical value F, can be obtained by the 
area under the F-distribution corresponding to the value of F that implies rejection of the
Null hypothesis when in fact it is true. The Type I errors corresponding to specified 
critical values are readily available in tabular form in any standard textbook in statistics.

Now we turn to the problem of obtaining the sum of squares of residuals under the null 
and the alternative hypotheses. When the Alternative hypothesis is true, there are no 
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restrictions on the estimates, and the residual sum of squares is exactly that obtained 
under the ordinary least squares estimation of the specified regression equation (6.34). 
To obtain the residual sum of squares under the Null hypothesis the researcher has to 
impose the condition that the resulting estimates are the same as the parameter values 
implied by the Null hypothesis. In equation (6.34) with four independent variables the 
Null hypothesis  β 1 = μ1 and β 2 = μ2 may be imposed as

         logTEA = β̂ 0+μ 1 log Pcy+μ 2 log PI+β̂ 3 log Pbz+β̂ 4 log Y+e  .            (6.37)

Since μ1 and μ2 are specified constants, the corresponding terms may be taken to the left 
side to obtain

        logTEA−μ 1 log Pcy−μ 2 log PI = β̂ 0+β̂ 3 log Pbz+β̂ 4 log Y+e ,            (6.38)

which may be rewritten as:

             Y' = β̂ 0+β̂ 3 log Pbz+β̂ 4 log Y +e                                                          (6.39)

where  Y' = logTEA−μ 1 log Pcy−μ 2 log PI .

Obtaining equation (6.39) by ordinary least squares is identical to imposing the 
restrictions β̂ 1 = μ1, and β̂ 2 = μ2 in equation (6.37). By defining a new variable, Y', and 
running regression equation (6.39) the researcher has obtained the residual sum of 
squares under the Null hypothesis. Once the residual sums of squares under the null and 
the alternative hypotheses are known, the F-statistic can be computed by using 
expression (6.36).

In the specific example of Ceylonese tea, the regression equations under the alternative 
and null hypotheses are

        log TEA = 2.837   -  1.481 log Pcy + 1.181 log PI  + 0.186 log Pbz + 0.257 log Y
                          (2.000)   (0.987)             (0.690)            (0.134)             (0.370)

                                           RSS(H A ) = 0.4277                                                    (6.40)
                   
      (log TEA + log Pcy - 0 . PI) = - 0.738  + 0.199 log Pbz + 0.261 log Y
                                                       (0.820)   (0.155)             (0.165)

                                           RSS(H N ) = 0.6788                                                   (6.41)        

The Null hypothesis imposes two restrictions on the estimates. The F-statistic may be 
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computed as

                          F=
(0.6788−0.4277)/2

(0.4277)/17
  = 4.99                                     (6.42)

Since the numbers of degrees of freedom in the numerator total 2 and in the denominator
17, the F-statistic follows F(2, 17). Corresponding to the 95 percent level of confidence 
we obtain the critical value F, as 3.59. The test rule is, “Whenever the computed F-
statistic exceeds the critical value (F c = 3.59) we reject the Null hypothesis.” The 
computed statistic (F = 4.99) exceeds the critical value; therefore at the 95 percent level 
of confidence we reject the Null hypothesis.

Notice that if the researcher had treated the stated Null hypothesis as two independent 
statements regarding the parameters β 1, and β 2 he would have reached a different 
answer. Since the theory makes a statement on the parameters jointly rather than 
independently, a test procedure should be based on the total statement. Testing only a 
part of a complete statement may lead to wrong conclusions.

A Null hypothesis frequently found in empirical research is the case in which μ1 = 0 and
μ2 = 0. The residual sum of squares under the Null hypothesis is obtained by merely 
deleting the corresponding independent variables from the regression equation.

This test procedure can be extended to regression equations with several independent 
variables and several restrictions on the parameters. Formula (6.36) is given for a 
general case with n restrictions implied by the Null hypothesis and K parameters, 
including the constant term implicit in our discussion. It may be noted that when n = 1, 
the test procedure is identical to that which we used for testing a single parameter. When
the number of degrees of freedom in the numerator is 1, the F-statistic is nothing but the 
square of the t-statistic with the number of degrees of freedom of the denominator.

6.6 Test for Equivalence of Two Parameters

Another Null hypothesis involving several parameters that is frequently encountered by 
empirical researchers is

                 H N :β 1=β 2          H A : H N  is false .                                          (6.43)

This Null hypothesis (6.43) is similar to the one discussed earlier. The F-statistic can be 
used once the residual sum of squares has been obtained under the Null and the 
Alternative hypotheses.
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The residual sum of squares under the Alternative hypothesis is identical to that obtained
under the ordinary least squares estimation. The sum of squares of the residuals under 
the Null hypothesis can be obtained by imposing the condition that the resulting 
estimates for β 1 and β 2 are the same. This may be accomplished in the writing of the 
regression equation. For example, in the case of three independent variables;

                      y t = β̂ 1 x1t + β̂ 2 x2t + β̂ 3 x3 t + e3 t                                (6.44)

Since the estimates of β 1 and β 2 are the same, under Null hypothesis (6.43) equation 
(6.44) may be rewritten as

                       y t = β̂ 1(x1 t+x2 t)+ β̂ 3 x3 t+e3 t                                              (6.45)

which becomes

                       y t = β̂ 1 x ' t + β̂ 3 x3 t + e3 t                                                (6.46)      

By defining the variable x' as x1+x2 and using ordinary least squares estimation for 
regression equation (6.46), we are able to estimate equation (6.44) with the restrictions 
implied by the Null hypothesis.

This Null hypothesis may be generalized to a test involving several parameters. 

Consider for example

               H N :β 1=β 2=β 3           H A : H N is false.

The Null hypothesis involves two restrictions on parameters, namely β 1 = β 2 
and β 2 = β 3. The residual sum of squares under the Null hypothesis is obtained by 
defining x' as x1+x2+x3.

The residual sum of squares given by equation (6.46) is the RSS(HN). The F-statistic 
given by (6.36) can be computed for testing the Null hypothesis.

To illustrate the test procedure, let us consider the rice production function for the 
Guntur district in India:

                 Q = β 0 + β 1 I + β 2 D + β 3 R + β 4 t + ε                            (6.47)
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Assume that the Null hypothesis states that the marginal yield of a dry acre is the same 
as that of an irrigated acre. The Null hypothesis may be expressed as:

                 H N :β 1=β 2            H A : H N is false.                                 (6.48)      
              
To compute the test statistic, F, we need to estimate equation (6.47) under the Null 
hypothesis and the Alternative hypothesis. Under the Alternative hypothesis the 
parameter values can take any value; hence, we estimate the equation without imposing 
any restrictions:

                Q = -739.950 + 0.578 I + 0.218 D + 46.588 R – 40.388 t
                                  RSS(H A) = 1,614,627.                                                 (6.49)

When the researcher has external theoretical information that states that the Null 
hypothesis is true, he may incorporate the truth into his estimation by forcing the 
coefficients of the appropriate variables to be the same by using this procedure.

When the Null hypothesis is true we estimate the equation in such a way that 
we obtain the same regression coefficient for the two independent variables 
(I and D) as
                     Q = - 669.241 + 0.520 (I + D) + 47.603 R – 32.246 t
                              RSS(H N) = 1,626,856 .                                                  (6.50)

The residual sums of squares under the Null and the Alternative hypotheses are 
1,626,856 and 1,614,627 respectively. The corresponding F-statistic is

                  F=
(1,626,856−1,614,627)/1

(1,614,627)/16
=0.1211 .                           (6.51)

Corresponding to one degree of freedom in the numerator and sixteen degrees of 
freedom in the denominator, the critical value for the F distribution for the 95 percent 
level of confidence is obtained as 4.49. The test rule is,  “Whenever the computed F-
statistic exceeds the value of 4.49 we reject the Null hypothesis.”

The computed statistic 0.121 does not satisfy the rule. Hence, the Null hypothesis is not 
rejected, at the 95 percent level of confidence. We do not reject the Null hypothesis that 
the marginal yields of irrigated acre and of dry acre are the same.

This test procedure may also be used when the Null hypothesis implies that one 
parameter is a constant proportion of another. For example, let the Null hypothesis be
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             H N : k . β 1=β 2         H A : H N  is false.                                    (6.52)    

where k is a given constant.

Under Null hypothesis (6.52) the estimated regression equation (6.45) now becomes

                  y t = β̂ 1(x1 t+k x2 t) + β̂ 3 x3t+e3t .                                 (6.53)

Testing of the Null hypothesis in many practical situations involves either the t- or the 
F-statistic, and the necessary ingredients for computing these statistics may be obtained 
by simple least squares regression. Once the researcher translates the restrictions implied
by the Null hypothesis into an estimable regression equation, the rest is a mechanical 
standard process of estimation.

6.7 Testing across Several Sets of Data

All the test procedures discussed so far relate to a linear regression for a given set of 
data. When the researcher estimates a regression equation separately for several sets of 
data, he may want to test whether some or all of the parameters are the same for all 
different sets of data. Instances are numerous in econometric research. The researcher 
may, for example, want to test whether the demand schedule for Indian imports in the 
US. is the same before and after India's independence. He will then estimate one 
regression for pre-independence and another for post-independence, and test the Null 
hypothesis that they are the same for both periods. As another example, he may be 
interested in testing the Null hypothesis that the marginal productivity of 
labor is the same in all southern as in all northern states of the United States.

This problem is reduced essentially to the problem of units of measurement. By 
appropriate choice of units of measurement we can always express constant 
proportionality between parameters in the form of Null hypothesis (6.48).

Consider the following regression equations for two sets of data in which the same 
definitions of the variables and the same general regression model are 
used:
              Y t = β 0 + β 1 X 1t + β 2 X 2 t + β 3 X 3 t + ε 1t                                   (6.54)

             Y t ' = β 0
* + β 1

* X 1 t ' + β 2
* X 2t ' + β 3

* X 3t ' + ε 2t ' .                             (6.55)

Equation (6.54) corresponds to the first set of data and (6.55) corresponds to the second 
set. In this case the t and t' subscripts (respectively distinguishing the two sets of data) 
are used only to identify separate observations and do not necessarily imply time-series 
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data. The following results hold for cross-sectional as well as time-series data.

The researcher is interested in testing the Null hypothesis

                      H N : β 1=β 1
*            H A : H N  is false .                                                   (6.56)

The test procedure may be based on the residual sum of squares under the Null and the 
Alternative hypotheses. To pose this as a special case of preceding problems, let us 
introduce a dummy variable, D, to distinguish between the two sets of data. Let D take 
on a value of zero when corresponding to the first set of data and of unity for the second 
set. Since the variables used in equations (6.54) and (6.55) have the same definitions, we
may combine the two sets of data into a pooled set having the original variables 
and then utilize a dummy variable to distinguish the sets.

Taking advantage of the information contained in the dummy variable, we may rewrite 
equations (6.54) and (6.55) as one regression equation:

              Y t = β 0+α 0 D+β 1 X1 t+α 1(X1 t . D)+β 2 X 2t+α 2(X 2t . D)+β 3 X3 t+α 3(X 3t . D)+ε t     (6.57)

When the dummy variable takes the value zero, the data correspond to the first set, and 
equation (6.57) is identical to equation (6.54). When the dummy variable is unity the 
data correspond to the second set, and equation (6.57) becomes

              Y t = (β 0+α 0)+(β 1+α 1) X1 t+(β 2+α 2) X 2t+(β 3+α 3) X3 t+ε t                            (6.58)

which can be rewritten as

               Y t = β 0
* + β 1

* X 1t + β 2
* X 2 t + β 3

* X3 t + ε t .                                                 (6.59)      

Equation (6.58) is nothing but equation (6.55) rewritten in terms of the parameters, β ' s 
and α ' s. By using equation (6.57) instead of the two equations (6.54) and (6.55) we 
neither gain nor lose any information in terms of interpretation of the parameters. As we 
have already shown, estimation of equation (6.57) from the pooled data gives the same 
regression estimates as those obtained by estimating equations (6.54) and (6.55) 
separately to the respective sets of data. The sum of squares of the residuals in equation 
(6.57) is equal to the addition of the two sums of squares of residuals from the 
estimation of equations (6.54) and (6.55) separately. Also, the number of degrees of 
freedom corresponding to equation (6.57) is equal to the sum of the separate numbers of 
degrees of freedom corresponding to the two regression equations (6.54) and (6.55).

To repeat: whether the researcher estimates the two equations (6.54) and (6.55) 
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separately to the two sets of data, or estimates equation (6.57) to the pooled data, he will 
obtain identical information regarding the estimates, the residual sum of squares, and the
number of degrees of freedom. There is no loss or gain in estimation or interpretation.

In the form of equation (6.57), Null hypothesis (6.56) is analytically equivalent to Null 
hypothesis (6.43) discussed above. The test procedure developed for Null hypothesis 
(6.43) is equally applicable for (6.56) when the latter is considered to be the regression 
equation for a single set of data.

To compute the test statistic we need the residual sum of squares under both the null and
the alternative hypotheses. Under the Alternative hypothesis no restrictions are imposed 
on the estimates. The ordinary least squares estimation of equation (6.57) for the pooled 
data gives the residual sum of squares under the Alternative hypothesis. If the researcher
has already computed the regression equations for the two sets of data, he may obtain 
the RSS(H A) by simply summing the two residual sums of squares and the 
respective numbers of degrees of freedom to obtain the residual sum of squares and the 
number of degrees of freedom corresponding to equation (6.57).

The residual sum of squares under the Null hypothesis may be obtained by estimating 
equation (6.57) with the restrictions implied by the Null hypothesis. 

The Null hypothesis implies that β 1=β 1
* , which is the same as  α 1=0  in equation (6.57). 

This condition may be easily imposed by deleting the term (X 1t . D) in equation (6.57). 
The residual sum of squares obtained in estimating the following equation for the pooled
data is the RSS( H N):

           Y t = β 0+α 0 D+β 1 X1 t+β 2 X 2t+α 2(X 2 t . D)+β 3 X3 t+α 3(X 3t . D)+ε t          (6.60)

Equation (6.60) implies the same estimate corresponding to the coefficient of  X 1t, for 
the two regressions (6.54) and (6.55), whereas all estimates of other parameters are 
different for the two equations. It may be noticed that the number of restrictions imposed
by the Null hypothesis in estimation of equation (6.57) also equals the number of terms 
deleted in equation (6.57) to obtain equation (6.60). When a Null hypothesis implies 
several, restrictions, the corresponding residual sum of squares may be obtained by 
deleting the appropriate terms in equation (6.57).

Once the researcher obtains the RSS(H N) and RSS(H A), the corresponding F-statistic 
given by (6.36) may be computed. The appropriate critical value, F c, corresponding to a 
given level of confidence may be used for the test criterion.
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The F-test may be used for any number of restrictions, provided that the researcher can 
obtain the residual sum of squares under the Null hypothesis. A frequent case in applied 
econometrics is the case in which, instead of testing for a subgroup of parameters, the 
researcher is interested in testing the Null hypothesis that all parameters are the same for
the two sets of data. For example, in the case under consideration examine the Null 
hypothesis on equations (6.54) and (6.55):

                 H N : β i=β i
*   for all i(i= 0, 1, 2, 3)         H A : H N  is false                    (6.61)

 
This Null hypothesis implies four restrictions; we may use an F-test. The residual sum 
of squares under the Alternative hypothesis is the same as in the above examples. The 
residual sum of squares under the Null hypothesis is obtained by estimating (6.57) after 
deleting all the appropriate terms applied by the Null hypothesis. As can be seen, the 
equation implied by the null hypothesis is

              Y t = β 0 + β 1 X 1t + β 2 X 2 t + β 3 X3 t + ε t ,                                     (6.62)

which is in the same form as equations (6.54) and (6.55).

The RSS(H N) is obtained by simply estimating equation (6.62) for the pooled data with 
no dummy variables. The RSS (H A) is obtained by estimating equation (6.62) separately 
for the two sets of data. When the Null hypothesis implies that all parameters are the 
same for the two sets of data, there is no need to introduce a dummy variable, because 
the researcher can now obtain all ingredients necessary to compute the F-test by 
estimating the equations separately to the two sets of data and estimating the same 
equation to the pooled data.

The F-test may be used in the context of linear regression equations with several 
independent variables and for several sets of data. With (M) sets of data the researcher 
has to introduce (M - 1) dummy variables to distinguish the sets. By rewriting the 
regression equations corresponding to various sets of data in the form of equation (6.57) 
he can clearly see the restrictions implied by the Null hypothesis and may estimate the 
RSS(H A) by the standard regression techniques.

The reader may already have noticed that in hypothesis testing, whether the Null 
hypothesis is based on one set of data or on several sets, on one parameter or on several 
parameters, the test procedure is to obtain the residual sum of squares by using the least 
squares estimation of a regression equation. Once the researcher obtains the basic form 
of the regression (for example, equation (6.57)) all regression equations that need to be 
computed are obtained by deleting the appropriate independent variables. With the 
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availability of regression programs, the cost of obtaining an additional regression 
equation is negligible.

The test procedures discussed so far have been based on regression coefficients. In 
econometric research, however, one also encounters hypotheses not readily expressible 
in the form of linear regression models. Some such hypotheses and the relevant test 
procedures are now considered.

6.8 Test for Association

Often in empirical investigations the researcher proceeds on the basis of conjectures, 
regardless of theoretical reasoning. Such investigations are used to find out whether any 
systematic relation exists between two observed variables even if there is no reason for 
any causal relationship. These results are “empirical observations” and need not imply 
any theoretical relations. For example, a statistician may observe, on the basis of 
empirical investigation, that the proportion of lung cancer among smokers is higher than 
among nonsmokers. This empirical observation does not imply that smoking is the cause
of lung cancer; any such causal relation would need to be established by the medical 
profession on the basis of its theories. Lack of any underlying theory does not, however, 
invalidate empirical observations.

When based on strong evidence, such observations call for explanation, and the search 
for explanation has resulted in much of the feedback from empirical work to theory. In 
econometric research, the making of empirical observations on the basis of evidence, 
even if no theory already exists, is a task equal in importance to the testing of a specified
theory for appropriateness.

Any systematic relation between two qualitative variables is called association. When 
there is no systematic relation between the variables, they are called independent; that is,
the value of one variable is not associated with the observed value of the other. 
Association does not imply causal relationship. Any variable qualitative in nature may 
be categorized into one of two groups: with, or without, a specified attribute. For 
example, information on a set of farmers may be classified as “with” or “without” 
education. When the variable is agricultural productivity, the yield may be classified ass 
“high” and “low.” Even though the information on the two variables is, in principle, 
quantitative, they may be treated as qualitative variables. When the above two variables, 
education and agricultural productivity, are precisely measured, the researcher may use a
better test procedure. When the variables are inadequately defined, or when it is less 
“sinful” to treat the information as qualitative rather than quantitative, or when the 

                                                       Hypothesis Testig                                                    page 26



information is purely qualitative, then the researcher may decide to use the test for 
association between the two variables.

In our example, if the per-acre yield is independent of the education of the farmers, and 
if farmers are classified as producing high or low yield, we would expect to observe the 
same proportion of high-yield farmers among the educated as among the illiterate; and a 
similar situation for the low-yield farmers.

When the researcher actually observes the same percentage of educated and of illiterate 
farmers having high yield, then empirically the two variables are independent. Because 
of sampling fluctuations, however, the researcher may rarely find the percentages to be 
exactly equal. He is then interested in testing an Null hypothesis that the difference is 
due to the sampling fluctuations. If the evidence rejects the Null hypothesis, then the 
difference in percentages is greater than can be attributed to sampling fluctuations, and 
some systematic relationship is implied.

In our example, the Null hypothesis may be stated as

               H N : education and yield are independent         H A : H N is false         (6.63)

To test the Null hypothesis we need a test statistic. This may be obtained on the basis of 
what the researcher would expect to observe if the Null hypothesis were true. Under the 
Null hypothesis the proportion of high-yield farmers is the same for the non-educated as 
for the educated category, and this is the same proportion of high yield as for the total 
sample. Since the proportion of high-yield farmers in the total sample is known, the 
researcher can readily compute the number of farmers with high yield to be expected in 
each category if the Null hypothesis were true.

The data corresponding to 256 districts in India are given in Table 6.1.

Each number in the table represents the attributes corresponding to its column and row. 
For example, 40 families are illiterate and have high yield. 
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          Table 6.1. Data on Education and Yield per Acre in India

                 Level of education                      Yield per acre
                                                              Low     High     Total     Proportion

                    Illiterate                              16        40          56       0.219
                    Educated                             49      151        200       0.781    

                                       Total                 65      191        256       1.0
                                       Proportion     0.254   0.746       1.0

In all, 191 families out of 256 have high yield. The proportion of high yield in the total 
sample is p = 191/256 = 0.746. If the two variables are independent, then we expect 
0.746 of the total educated farmers to have high yield and the same proportion of 
illiterate farmers to have high yield. The number of expected observations corresponding
to each category may be presented as in Table 6.2.

                   Table 6.2. Expected Numbers in Each Category 
                   When Education and Yield Are Independent

                    Level of education                       Yield per acre
                                                                 Low    High     Total
                               Illiterate                       14       42         56
                               Educated                      51     149       200
                                                       Total     65     191       256
               
The observed numbers differ from those expected under the Null hypothesis. The 
researcher wants to test whether the difference is due to sampling fluctuations or not.

In all, there are four separate categories, and their corresponding expected and observed 
values may be arranged as in Table 6.3.
                      
               Table 6.3. The Difference between the Observed and Expected 
                                 Numbers in the Four Categories

                      Number    Expected     Observed     Difference
                          i                E i                Oi                  d i

                          1              14               16                  2
                          2              42               40                  2
                          3              51               49                  2
                          4            149             151                  2 
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The test statistic is defined as

                         Chi-square (χ 2)  =  ∑
i=1

4

(di
2/E i) .                                                (6.64)   

The test statistic defined by (6.64) follows the chi-squared (χ 2) distribution with 1 
degree of freedom. By setting up a critical value for the chi-square (χ c

2) the researcher 
may use as a test rule: “Whenever the chi-squared value exceeds the critical value Z, the 
Null hypothesis is rejected.” The levels of confidence associated with given levels of 
critical value are presented in most textbooks. For the 95 percent level of confidence the 
critical value of chi-square with one degree of freedom is 3.84. Hence, our test 
rule is, “Whenever the computed χ 2 exceeds 3.84 the Null hypothesis is rejected.” By 
definition in (6.64) the computed χ 2 statistic is

                   χ 2 = 4/14  + 4/42  +  4/51  +  4/149  =  0.44                                    (6.65)

The test statistic does not satisfy the test rule. We do not reject the Null hypothesis on 
the basis of available evidence. That is, within the population covered by the data there 
is not enough evidence to reject the statement, “Education of farmers and their yield per 
acre have no systematic empirical relation.”

This chi-squared test may be applied to numerous instances in economic and business 
studies.  When the researcher finds a systematic relation between the variables, he may 
be interested in knowing whether the association is positive or negative. When low 
literacy and low yield are more frequently observed than would be expected if the two 
variables were independent, then it may be called positive association; a reverse case is 
negative association.

Sometimes the systematic relation between two variables may be the result of a third 
variable influencing them both. In such cases the researcher can make a valid inference 
from the data only if the third variable is held constant. This may be accomplished by 
separating the data into several groups within which the third variable is kept constant; 
the association within each subgroup is then called the partial association. If the 
systematic relation between the variables is not due to the presence of the third variable, 
the same systematic relation should be observed within all the subgroups classified 
according to the third variable. If the relationship changes in a systematic way according
to which values the third variable takes, then it becomes apparent that the observed 
systematic relation cannot be independent of the third variable. In this case the observed 
association is called a spurious association. The researcher should be alert for such 
misleading results.
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6.9 Test for Correlation

Association between two quantitative variables is called a correlation. We used a 2 x 2 
table in the context of qualitative variables, but when the data on variables are more 
precise than mere “high” and “low” we should be able to improve the test procedure by 
taking advantage of this information. The correlation between two quantitative variables 
provides such a test.

Let X and Y be two variables under investigation, and let the data correspond to T 
observations. The correlation between the variables is defined as

                 r XY =
Σ(X t− X̄)(Y t−Ȳ )

√Σ(X t− X̄)2 .Σ(Y t−Ȳ )2  ,                                         (6.66)

where  X̄  and Ȳ  are the means of X and Y respectively.

When the value of X does not depend upon the value of Y, then the correlation between 
the two is zero, and they are called independent. Suppose the values of X and Y are 
taken from a population with zero correlation. Since the correlation coefficient r is based
on a sample of only T observations from this population it need not be zero, because of 
sampling fluctuations.

The researcher is interested in testing whether the correlation between the two variables 
in the population is zero. If the observed correlation in the sample is more than would be
expected due to sampling fluctuations, then he may reject the Null hypothesis that the 
two variables are independent in the population. The Null hypothesis is

             H N: correlation between X and Y in the population is zero
             H A: H N is false.                                                                          (6.67)

The test statistic is defined as

                                 t =
r√(T−2)

√1−r2
 .                                                      (6.68)

                                   
If the Null hypothesis were true and the variables are drawn from a normal distribution, 
the t-statistic defined in (6.68) follows Student’s t distribution with (T - 2) degrees of 
freedom. The test rule is to reject the Null hypothesis whenever the computed t-statistic 
exceeds the critical value  t c. The alternative hypothesis implies a two-tailed test. The 
critical value for a two-tailed test must have two values, + t c, and - t c, or the test criterion
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may be restated as  |t| > t c. The probability of Type I error for the two-tailed test 
associated with the given critical value may be obtained from standard tables.

6.10 The d-Test

A common problem in empirical investigation is to study the effectiveness of 
a policy in the short run. The time period for such studies is often so limited 
that almost all the independent variables determining the value of the dependent variable
—the variable under investigation—remain unchanged. A regression analysis for such 
situations seems inappropriate and uneconomical. A simple test based on the differences
of the dependent variable before and after the policy implementation provides an 
answer.

When no other variable except the policy has changed between two time periods, and 
there is a difference in the observed values of the dependent variable, the difference is 
attributable to the policy. In real life we rarely observe a situation in which the 
difference is zero even if the policy did not change. The researcher is, therefore, 
interested in testing whether the difference is due to randomness of the data or whether 
there is any systematic difference.

For example, consider the case of free reserves of commercial banks. Suppose the 
researcher wants to study whether a recent increase in the Central Bank’s rediscount 
value (bank rate) has altered the free reserves of the commercial banks. Suppose no 
change has occurred in other variables that would determine the bank’s policy as to the 
free reserves. The researcher may collect information from the various banks on their 
free reserves before and after the change in the rediscount rate. Let the data correspond 
to T commercial banks, and let the difference in free reserves corresponding to the ith 
bank be
                  d i = (free reserves before the change) — (free  reserves after the change).            (6.69)

The Null hypothesis, based on the mean difference for all banks in the total population 
rather than for the T selected banks, states that the mean difference for the population is 
zero:
                 H N: mean of d in the population is zero
                 H A: H N is false.                                                                       (6.70)

The test statistic is based on the observed mean and variance of the d's, corresponding to
the sample of T observations:
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t = d̄

√ Σ(d−d̄)2

T−1

 .                                                    (6.71)

Under the Null hypothesis, if the d's were drawn randomly from a normal distribution, 
then the t-statistic follows Student’s t distribution with (T - 1) degrees of freedom. The 
test rule rejects the Null hypothesis whenever the computed t-statistic exceeds the 
critical value.

6.11  Transformation of the Variables

Some functional forms are expressible as a linear function after a suitable transformation
of the variables. For example, equation (6.73) is not a linear function in X 1, but by 
defining X 1

/ , a new variable, as equal to X 1
2, we may express the equation in linear form 

as in (6.74).
                                    Y t = β 0+β 1 X 1t+β 2 X2 t+ε 1 t                             (6.72)

                                    Y t = α 0+α 1 X 1t
2 +α 2 X 2t+ε 2 t                             (6.73)

                                    Y t = α 0+α 1 X 1t
/ +α 2 X 2t+ε 2 t                            (6.74)

Since equation (6.74) is a linear function of its independent variables, X 1
/  and X 2 , the 

researcher may estimate it by the standard least squares procedure. In this case the 
problem is not with the technique of estimation. Since the researcher is generally 
interested in knowing which of the alternative non-linear forms of the variable X 1 is 
empirically appropriate, he may treat the alternative forms of the variable as alternative 
definitions of a specified variable. 

When a variable has alternative definitions, its empirically appropriate definition may be
obtained by studying the residual sum of squares of the regressions under the various 
definitions. As long as the dependent variable and the number of parameters are 
estimated the same, the residual sums of squares are comparable in different equations 
with different definitions of an independent variable. 

For example, coal from different sources have different BTU.  Using BTU instead of the
amount of coal would improve the estimates.  It is the quality of the inputs, not the 
quantity that counts.
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This case is simple because we are dealing with the functional form of an independent 
variable. A problem frequently encountered in empirical research is the choice between 
a linear regression and a log-linear regression equation. To answer this question let us 
consider first the case in which the alternative functional forms are 

                                   Y t = β 0+β 1 X 1t+β 2 X2 t+ε 1 t ,                          (6.75)

                              logY t = α 0+α 1 X 1 t+α 2 X 2 t+ε 2t .                          (6.76)

In this case the researcher cannot play the game of minimum residual sum of squares, 
because the dependent variables are different in the two equations. 

We can trace the source of our trouble to a scaling factor. The variance of Y changes 
with the units of measurement of Y, but the variance of log Y does not, because 
log cY = log c + log Y and the addition of a constant (log c) does not alter the variance. 
A direct comparison of residual sum of squares is therefore meaningless because by a 
proper choice of units of measurement one residual sum of squares may be made smaller
than the other. 

By standardizing the variable Y in such a way that its variance does not change with 
units of measurement we may bring these two equations onto a common footing. If we 
do the transformation so that the “Jacobian” of transformation is the same for Y* and 
log Y*, where Y* is the transformed Y, we can directly compare the residual sums of 
squares. A transformation of Y that allows such a comparison of the residual sum of 
squares may be defined as 

                                              Y t
* = c . Y t  ,                                           (6.77)

where                              c = exp(−Σ log Y t

T )                                  (6.77a)

is the inverse of the geometric mean of Y. By standardizing Y by its geometric mean 
and defining the standardized value as Y* we may express the two equations (6.75) and 
(6.76) in terms of Y* rather than Y as 

                                       Y t
* = β 0+β 1 X 1 t

* +β 2 X2 t
* +ε 1 t

*                          (6.78)

                                 logY t
* = α 0+α 1 X1 t

* +α 2 X2 t
* +ε 2 t

*                           (6.79)

Since the residual sums of squares in these two equations, (6.78) and (6.79), are directly 
comparable, we choose the functional form yielding the minimum residual sum of 
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squares as the empirically appropriate functional form. 

The researcher may use a nonparametric test to see whether the difference between the 
residual sums of squares in these two functional forms is significant. The test is based on
a statistic defined as 

                                    d = T
2 |log

Σe1 t
*2

Σe2t
*2| ,                                                    (6.80)                        

where Σe1 t
*2 and Σe2 t

*2 are the residual sums of squares in estimating equations (6.78) and 
(6.79) respectively. The d statistic follows a chi-squared distribution with one degree of 
freedom. When the d statistic exceeds the chosen critical value, the researcher may 
reject the null hypothesis that these two functions are empirically equivalent. 

This may seem to be an ad hoc procedure, but actually it is similar to so-called 
“Maximum likelihood estimation,” except that in this case we are not interested in the 
functional form that maximizes the likelihood value over the entire space. We are 
choosing one of the two well specified functional forms with the larger likelihood value.
The likelihood function may have a higher value outside the ranges of our inquiry, but 
we are not concerned with them because it may be difficult to interpret their relevance in
a practical situation. 

Once we understand the procedure of comparison between two regression equations 
with different dependent variables, we may extend our results to the choice of the linear 
versus the log-linear functional form. The choice is between the equations 

                               Y t
* = β 0+β 1 X 1 t

* +β 2 X2 t
* +ε 1 t

*  ,                                       (6.81)

                               logY t
* = γ 0+γ 1 log X 1 t

* +γ 2 logX2 t
* +ε 3 t

*  .                       (6.82)

If the researcher has standardized his dependent variable by dividing it by its geometric 
mean, then the two equations are comparable. Using the residual sum of squares as the 
criterion, we choose the one with the minimum residual sum of squares. In this choice 
we are combining the rules for the transformation of a dependent variable and of 
independent variables. To illustrate this procedure let us consider a numerical example.

A production function was estimated for Indian woolen textiles as a log-linear function. 
We could just as well have expressed the production process as a linear function of the 
inputs.
                   Q = 4.9669 + 2.3965 K + 2.7031 L    Σe1 t

*2 =  1471.0702            (6.83)

             log Q = 1.6524 + 0.4133 log K + 0.7082 log L  Σe2 t
*2  =  1.7367       (6.84)
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where Σe1 t
*2 and Σe2 t

*2 are the residual sums of squares in these two equations respectively. 
Since the dependent variables in equations (6.83) and (6.84) are not the same we cannot 
directly compare the sums of squares of the residuals. To make them comparable we 
have to transform the dependent variable Q as 

                                                  Q* = c . Q,                                              (6.85)

where c is the inverse of the geometric mean of Q. The geometric mean of Q is 19.2459, 
hence c is 0.05196. To be able to compare the residual sums of squares we have to 
estimate the following regression equations: 

                             Q* = β 0
*+β 1

* K +β 2
* L+ε 1t

*   ,                                         (6.86)

                       logQ* = γ 0
*+γ 1

* log K +γ 2
* log L+ε 2 t

*   .                              (6.87)

For our exercise we do not need the estimates but only the residual sums of squares. We 
know that the variance of log Q* and of log Q is the same, because these Q's are 
constant multiples of each other. The residual sum of squares in equation (6.84) is the 
same as in (6.87). We also know that multiplication of the entire equation (6.83) by a 
constant c is the same as changing the units of measurement of all the variables by the 
same scale. Hence, the residual sum of squares in (6.86) is the same as in (6.83) if they 
are expressed in the same units. Thus the sums of squares of the residuals in equations 
(6.86) and (6.87)—respectively Σe1 t

*2 and Σe2 t
*2 —are 

                      Σe1 t
*2 = c2 . Σe1 t

2 = 3.9715 ,                                              (6.88)

                      Σe2 t
*2 = Σe2t

2 = 1.7367  .                                                  (6.89)

The sum of squares of the residuals in equation (6.87) is smaller than that of (6.86). 
Hence, the log-linear function appears empirically more appropriate than the linear 
function for Indian woolen textiles. 

To test whether these two functions are empirically equivalent, let us compute the d 
statistic: 

                              d = 15
2 |log

3.9715
1.7367| = 6.2 ,                                   (6.90)

where the sample size is 15. The d statistic follows the chi-squared distribution with one 
degree of freedom. The critical value for the 90 percent level of confidence is 2.706. The
computed statistic, 6.2, exceeds the critical value. Hence we reject the null hypothesis 
that these two functions are empirically equivalent with 90 percent confidence. 
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