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                                           Chapter  3

                  Bias and Precision of the Regression Estimates

In the previous chapter we presented an intuitive feel for a number of problems of 
estimation in applied econometrics. We shall now turn to a more rigorous treatment of 
some of these problems. In many empirical situations the researcher leaves out some 
independent variables or includes others that do not belong in the true specification of a 
causal relation between the dependent and the independent variables. In this chapter we 
shall study the nature of the bias and of the precision of ordinary least squares estimates 
when the estimated equation is not the truth. Since bias and precision depend crucially 
on the theoretical distribution of the error terms, we shall analyze the distributional 
properties of regression estimates under different specifications of the error terms.

To set the stage, let us consider a case in which the truth is given by
                
                              y t = β 1 x1t + ε t,                                           (3.1)

where the lower-case letters refer to variables measured as deviations from their 
respective means.

The ordinary least squares estimate of β 1 from a set of given values of y and x1 is 
obtained as
                      β̂ 1 = Σ x1t y t /Σ x1t

2   .                                              (3.2)

The estimate given by (3.2) may not be equal to the parameter value β 1, because

                      β̂ 1 = Σ x1t (β 1 x1t+ε t)/Σ x1t
2   ,                                 (3.3)

                       β̂ 1 = β 1+Σ x1 tε t /Σ x1 t
2   ,                                        (3.4)

and the term Σ x1tε t/Σ x1t
2  is not always equal to zero.  Different sets of ε 's will give 

different values for the estimate β̂ 1, even though the values of x1 are the same. Since the 
values of the ε 's are unknown, the researcher has no way of discovering the seriousness 
of the deviation of the estimates from the parameter, or in which direction this deviation 
lies. The best he can do is to establish the theoretical distribution of the estimate β̂ 1 when
he knows the properties of the error terms. The statistical distribution of β̂ 1 for various 
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specifications of the error term constitutes the problem of precision of the estimates.

There are several ways of approaching this problem. A convenient specification that 
serves the needs of applied econometricians is to treat the x's as constants (fixed in 
repeated samples) and to study the statistical properties of β̂ 1 given by equation (3.4). 
When the error terms are assumed to have been generated by a specified statistical 
process, the distributional properties of β̂ 1 can be theoretically established.

A simple case is one in which the error terms are assumed to have been generated by a 
random selection from a statistical distribution with a mean of zero and a constant 
variance, σ ε

2.  In this specification the error term corresponding to any time period t, is 
generated by the same statistical distribution, and the error term corresponding to one 
time period does not depend in any systematic way on the error terms of the other time 
periods. This specification of the error generating process may be stated as

                         E(ε t) = 0,                                                 (3.5)
                         E(ε t

2) = σ ε
2 ,                                             (3.6)

                         E(ε tε t ') = 0         for  t≠t '  .                    (3.7)

The first two equations, (3.5) and (3.6), specify that the error terms are generated by a 
statistical distribution with mean zero and variance σ ε

2 for all time periods, and the last 
equation, (3.7), specifies that they are generated by a random selection.

Since the error terms have a statistical distribution, the estimate β̂ 1 which depends on 
these error terms also has a statistical distribution. The mean of the distribution of β̂ 1 
may be obtained by taking the expected value of the estimate

                         E( β̂ 1) = β 1+E(Σ x1 tε t / Σ x1t
2 ) .                                           (3.8)

              
Since the distribution of β̂ 1 is defined for our purposes under the assumption that the  x1's
are fixed in repeated samples, we obtain under assumption (3.5)

                         E( β̂ 1) = β 1+Σ x1 t E(ε t)/Σ x1 t
2 = β 1  ,                                (3.9)

since E(ε t) = 0 for all t.
 
The ordinary least squares estimate β̂ 1 has a statistical distribution with mean β 1, the 
parameter value itself. Thus β̂ 1 is an unbiased estimate of β 1 in the true equation.
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Let us now turn to the variance of the theoretical distribution of β̂ 1. When β̂ 1, is an 
estimate with a statistical distribution, its variance is defined as

                  V (β̂ 1) = E [ β̂ 1−E(β̂ 1)]
2                                         (3.10)

                             =  E [Σ x1tε t / Σ x1 t
2 ]2                                         (3.11)

                             =  (1 /Σ x1 t
2 )2 . E [Σ x1 tε t]

2 .                               (3.12)

Using the relation
 
                       E [Σ x1tε t ]

2 = E [ x11
2 ε 1

2+x12
2 ε 2

2+...+2 x11 x12ε 1ε 2+...]
                                           =  x11

2 E(ε 1
2)+x12

2 E(ε 2
2)+ ...+2 x11 x12 E(ε 1ε 2)+...              (3.13)

and substituting the specifications (3.6) and (3.7) in equation (3.13) we obtain

                       E [Σ x1tε t ]
2 = σ ε

2 .Σ x1 t
2   .                                                                   (3.14)

The variance of the estimate β̂ 1, may be obtained by substituting equation (3.14) in 
equation (3.12) to obtain

                        V (β̂ 1) = σ ε
2/ Σ x1 t

2   .                                                                           (3.15)

The variance of the estimate β̂ 1 depends on the variance of  ε  and on the values of the 
independent variable. The variance of β̂ 1 increases with the variance of the error term 
and decreases with Σ x1t

2  .

The variance of the estimate β̂ 1, provides a measure of the precision of the estimate. The
larger the variance of the estimate, the more widespread the distribution and the smaller 
the precision of the estimate.

When the error terms are generated randomly by a statistical distribution with mean zero
and variance σ ε

2, the ordinary least squares estimate has a theoretical distribution with 
mean β 1 and variance σ ε

2/Σ x1t
2  . The variance of the estimate involves the variance of the 

error term from the regression equation, which is generally unknown. We can still use 
these results for comparison of alternative estimation procedures if all procedures 
involve the same unknowns.
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3.1 Irrelevant Variables

Consider a situation in which the researcher could have estimated the parameter β 1, by 
estimating the regression equation
  
                         y t = ~β 1 x1t + ~β 2 x2t + et  .                                            (3.16)

When equation (3.1) is the truth, estimated equation (3.16) is a misspecification of the 
model, because it includes an irrelevant variable, (x2).

In the ordinary least squares estimation procedure the estimate 
~β 1 is obtained as

                     
~β 1 =

Σ x2
2 .Σ x1 y−Σ x1 x2 .Σ x2 y

Σ x1
2 .Σ x2

2−Σ x1 x2 . Σ x1 x2

  .                                         (3.17)

By substituting the true relation (3.1) for y in equation (3.17) we obtain

                     
~β 1 = β 1+

Σ x2
2 .Σ x1ε−Σ x1 x2 .Σ x2ε

Σ x1
2 . Σ x2

2−Σ x1 x2 .Σ x1 x2

  .                                    (3.18)

Using the specification of the error terms (3.5) and assuming that the x's are fixed in 
repeated samples (nonstochastic), we can show that

                    E( ~β 1) = β 1  .                                                                              (3.19)

The distribution of 
~β 1, the estimate of β 1, obtained from the misspecified model (3.16), 

has a mean of β 1. Even though x2 is an irrelevant variable (does not appear in the true 
equation) the estimate 

~β 1 is an unbiased estimate.

Now the researcher has two different ways of estimating β 1, both of which yield 
unbiased estimates, and he can base his choice on the precision of each. 

The variance of estimate β̂ 1 is given by (3.15), so we turn to the variance of 
estimate 

~β 1:

                    V (~β 1) = E [ ~β 1−E(~β 1)]
2                                                               (3.20)

                                 =  E[ Σ x2
2 .Σ x1ε−Σ x1 x2 .Σ x2ε

Σ x1
2 . Σ x2

2−Σ x1 x2 .Σ x1 x2
]

2

 .                                      (3.21)
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Using the specification of errors (3.6) and (3.7), and evaluating the terms as in (3.10) 
through (3.15), equation (3.21) can be simplified to

                        V (~β 1) = σ ε
2/[Σ x1

2(1−r x1 x2
2 )] .                                       (3.25)

The variance of the estimate β̂ 1 does not depend on the correlation between the two 
variables. It depends on Σ x1

2 only. 

The variance of the estimate ~β 1 depends on  Σ x1
2 as well as on the correlation between 

variables  x1 and x2. Since the square of the correlation coefficient is always a positive 
fraction (non-zero), the variance of 

~β 1 is usually larger than the variance of β̂ 1.
 
However, when the correlation between the two independent variables (r x1 x2) is zero, 
both β̂ 1 and 

~β 1 have the same variance. In this case both the estimates are identical, 
because zero correlation implies (Σ x1 x2 = 0). When the term (Σ x1 x2) is zero, equation 
(3.17) reduces to

                        ~β 1 = Σ x1 y / Σ x1
2 ,                                                            (3.26)

which is the same as the estimate β̂ 1, given by equation (3.2).
 
Now let us turn to the distributional properties of 

~β 2, the regression coefficient of the 
irrelevant variable. The ordinary least squares estimate 

~β 2 is obtained as

                        
~β 2 =

Σ x1
2 .Σ x2 y−Σ x1 x2 .Σ x1 y

Σ x1
2 .Σ x2

2−Σ x1 x2 . Σ x1 x2

  .                                  (3.27)

By substitution of the true relation (3.1) for y,

                      
~β 2 =

Σ x1
2 .Σ x2ε−Σ x1 x2. Σ x1ε

Σ x1
2 .Σ x2

2−Σ x1 x2 .Σ x1 x2

 .                                       (3.28)

The value of 
~β 2 also depends on the error terms (ε 's). Since the error terms follow a 

statistical distribution, so does 
~β 2. The mean value of the theoretical distribution of 

~β 2 is

                      E( ~β 2) = 0 .                                                                         (3.29)

The true value of the parameter β 2 is, however, zero, because for analytical purposes the 
true relation (3.1) may also be written as

                    y t = β 1 x1t + 0. x2 t +ε t  .                                                   (3.30)
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The regression coefficient of the irrelevant variable has a statistical distribution with 
mean zero which is its true parameter value; 

~β 2 is, therefore, an unbiased estimate.

This result may be generalized to a case of several irrelevant variables by rewriting the 
truth as
                          y t = β 1 x1t + 0. x2 t + ... + 0. xkt + ε t ,                                (3.31)

where the independent variables x2 through xk are irrelevant variables. The estimates of 
regression coefficients of all the irrelevant variables (x2 through xk) have theoretical 
distributions with zero mean, which is their true value. The estimate of the regression 
coefficient of x1 is still unbiased.

The variance of the distribution of ~β 2 is

                            V (~β 2) = E [ ~β 2−E(~β 2)]
2 .                                                         (3.32)

Following the derivations in equations (3.21) through (3.25), we may derive the variance
of 

~β 2 in equation (3.16) as

                           V (~β 2) = σ ε
2/[ Σ x2

2(1−r x1 x2
2 )] .                                                    (3.33)

Even though x2 is an irrelevant variable according to the specification of the truth, its 
regression coefficient has nonzero variance. That is, when the regression is estimated the
researcher may observe a nonzero value for ~β 2.

In the general case of a regression equation with k independent variables, whether they 
are relevant or not, the variance of ~β i, is given by the ith diagonal element, and the 
covariance between ~β i and ~β j; by the element in the ith column and jth row, in the 
following matrix:

                                     σ ε
2[

Σ x1
2 Σ x1 x2 ... Σ x1 xk

Σ x1 x2 Σ x2
2 ... Σ x2 xk

. . ... .

. . ... .

. . ... .
Σ x1 xk Σ x2 xk ... Σ xk

2
]
−1
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3.2 Left-Out Variables

A similar situation frequently found in empirical research is one in which a parameter 
can be estimated from two different regression equations, one of which has a left-out 
variable. To analyze this case let us consider that the true relation is

                               y t = β 1 x1t + β 2 x2t + ε t ,                                    (3.34)

where the error term (ε  ) follows the specification given by equations (3.5), (3.6), and 
(3.7).

When the researcher estimates the true relation (3.34), the estimate of β 1 by ordinary 
least squares is obtained as

                             β̂ 1 =
Σ x2

2 .Σ x1 y−Σ x1 x2 .Σ x2 y

Σ x1
2 .Σ x2

2−Σ x1 x2. Σ x1 x2

 .                              (3.35)

By substituting the true relation (3.34) for y in equation (3.35) we obtain

                               β̂ 1 = β 1+
Σ x2

2 .Σ x1ε−Σ x1 x2 .Σ x2ε
Σ x1

2 . Σ x2
2−Σ x1 x2 .Σ x1 x2

 .                      (3.36)

Since the error terms follow specification (3.5), it is easily seen that

                              E( β̂ 1) = β 1 .                                                             (3.37)

The theoretical distribution of β̂ 1, has the mean β 1, the true parameter value. 

The variance of the estimate β̂ 1 is

                             V (β̂ 1) = E [ β̂ 1−E(β̂ 1)]
2  .                                        (3.38)

The algebra involved in evaluating expression (3.38) is similar to that used in evaluating
equation (3.20), hence

                             V (β̂ 1) = σ ε
2/[Σ x1

2(1−r x1 x2
2 )] .                                  (3.39)

The estimate β̂ 1 obtained by estimating the true relation (3.34) has a statistical 
distribution with mean β 1 and variance (3.39) when the error terms follow specifications
(3.5), (3.6), and (3.7). 
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Suppose the researcher, by misspecification, estimates the following regression 
equation:
                       y t = ~β 1 x1t + et .                                                           (3.40)

The ordinary least squares estimate of β 1 in the misspecified model is obtained as

                         
~β 1 = Σ x1 y / Σ x1

2  .                                                                   (3.41)

By substituting the true relation (3.34) for y in equation (3.41) we obtain

                         
~β 1 = β 1+β 2Σ x1 x2/Σ x1

2+Σ x1ε /Σ x1
2   .                          (3.42)

The mean value of the statistical distribution of ~β 1 when the errors follow specification 
(3.5) is
                       E( ~β 1) = β 1+β 2(Σ x1 x2/Σ x1

2)  .                                        (3.43)

Using the Yule notation, we may rewrite (3.43) as

                        E( ~β 1) = β 1+β 2 b21  .                                                        (3.43a)

When the true relation is (3.34) and the errors are generated by specification (3.5), the 
researcher has two alternative estimators, namely β̂ 1, and ~β 1. The first is unbiased, 
whereas 

~β 1 is biased as a result of the misspecification of the model. If the researcher is 
interested only in unbiased estimators, his choice is obvious. But if he wants to consider 
the precision of the estimates as well, then he needs the variance of the distribution of 
the estimate.

The variance of 
~β 1 is

                         V (~β 1) = E [ ~β 1−E(~β 1)]
2

                                    =  E[β 1+β 2 b21+
Σ x1ε
Σ x1

2 −β 1−β 2 b21]
2

 

                                     =  E[ Σ x1ε
Σ x1

2 ]
2

The algebra involved in evaluating the expression E[Σ x1ε /Σ x1
2]2  is the same as in 

equations (3.10) through (3.15); hence

                             V (~β 1) = σ ε
2/ Σ x1

2  .                                                 (3.45)
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The variance of ~β 1 in equation (3.45) is therefore smaller than the variance of β̂ 1 in 
equation (3.39), even though the estimate 

~β 1 corresponds to a misspecified model, 
(3.40).  If the researcher can live with bias in the estimates and wants only estimates 
with smaller variance, then he will chose ~β 1 instead of β̂ 1 as an estimate of β 1.

In this case he has the option of choosing between a less efficient estimate of the true 
parameter β 1 and a more efficient estimate of a wrong (biased) value (β 1+β 2 .b21). If lack 
of bias is the prime criterion, he will choose one estimate; he will choose the other if 
precision takes precedence. The better choice is not obvious unless he has some 
additional criterion of selection.
 
Since there is a trade-off between bias and precision of the estimates, separate 
consideration of either may not be desirable. One rule that weighs both these aspects is 
the concept of “quadratic loss.” Whenever an estimate of a parameter differs from its 
true value, a loss proportional to the square of the difference between the estimate value 
and the parameter value is associated with that value of the estimate. Since the loss is 
assessed proportional to the square of the difference, it is called the “quadratic loss.” 
Thus defined, the quadratic loss has a statistical distribution because its value depends 
on the value of the estimate, which has a statistical distribution. The expected value of 
the distribution of quadratic loss is called the mean quadratic loss, or the mean square 
error. The estimator having the least mean quadratic loss tends to minimize the 
quadratic loss to a decision maker if he uses the same estimator in repeated trials.

The mean square error, or the mean quadratic loss, may be formally defined as

                       MSE (θ̂ ) = E(θ̂ −θ )2 ,                                               (3.46)

where θ  is the parameter and θ̂  is an estimate of that parameter.

Mean square error can be expressed in terms of the variance and the bias of the estimate 
by first adding and then subtracting E(θ̂ ) in (3.46),

                             MSE (θ̂ ) = E(θ̂ −E(θ̂ )+E(θ̂ )−θ )2                     (3.47)
                                             =  E [θ̂ −E(θ̂ )]2+[E(θ̂ )−θ ]2                  (3.48)

because the cross-product term has a zero expected value. Hence, the mean square error 
may be written as

                             MSE (θ̂ ) = Variance (θ̂ )+[Bias (θ̂ )]2 .                   (3.49)
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Using the concept of mean square error, we can compare the two previous estimates of
β 1, namely β̂ 1 and ~β 1. Since β̂ 1 is an unbiased estimate of β 1, the mean square error of β̂ 1

is merely the variance of the estimate itself:

                              MSE ( β̂ 1) = σ ε
2/[Σ x1

2(1−rx 1 x 2
2 )] .                              (3.50)

However, ~β 1 is biased, hence the mean square error is

                              MSE ( ~β 1) = σ ε
2/Σ x1

2+β 2
2 .b21

2  .                                    (3.51)

Although 
~β 1 is obtained from a misspecified model, its mean square error can be smaller

than that of β̂ 1. The condition under which this may occur may be obtained as

                              MSE ( β̂ 1) > MSE (~β 1) .                                                 (3.52)

By using the corresponding expressions for the mean square errors,

                     σ ε
2/[Σ x1

2(1−rx 1 x 2
2 )] > σ ε

2 / Σ x1
2+β 2

2(Σ x1 x2/Σ x1
2)2 ,                 (3.53)

                     σ ε
2(1−rx 1 x 2

2 ) > σ ε
2+β 2

2 Σ x2
2 . r x1 x 2

2   ,                                          (3.54)

                    σ ε
2( 1

1−r x1 x2
2

−1) > β 2
2 Σ x2

2 . rx 1x 2
2

  ,                                             (3.55)

                     1 > β 2
2/[ σ ε

2

Σ x2
2(1−rx1 x2

2 )] .                                                          (3.56)

                          
The expression

                                     
σ ε

2

Σ x2
2(1−r x1x 2

2 )

is the theoretical variance of the estimate β̂ 2 in the true equation (3.34). By using this 
relationship we can rewrite the condition (3.56) for smaller MSE(~β 1) compared to 
MSE(β̂ 1) as

                                     1 > β 2
2/V (β̂ 2)                                                           (3.57)

or
                                     1 > |τ | ,                                                                            (3.58)
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where

                         τ = β 2/√V (β̂ 2) = β 2.√ Σ x2
2(1−r x1 x2

2 )
σ ε

2
  .                                (3.59)

The researcher should note that τ  is not the same as the t-ratio corresponding to β̂ 2. The 
t-ratio has estimates of the parameter and variance in the numerator and denominator, 
whereas τ  has the theoretical values.

When τ  is less than unity in magnitude the researcher can obtain a smaller mean square 
error for the estimate of β 1 by misspecifying the model rather than estimating the true 
regression equation. The value of τ  is, however, based on the true values of the 
parameter and of the variance of the estimate, both of which are generally unknown. 
This result can be successfully employed only when the researcher has reason to believe 
that the parameter value cannot take on certain prespecified values. For example, it is 
usually assumed that the marginal propensity to consume is always a positive fraction, 
and so is elasticity of output with respect to labor in a production function. If the 
researcher believes that even the extreme value of this parameter cannot make τ  exceed 
unity, then he can discard the variable if the only objective is to minimize the mean 
square error of the estimate of β 1.

Note that as the sample size increases the quantity Σ x2
2 also increases. Since this quantity

appears in the numerator of equation (3.59), τ  is an increasing function of sample size. 
With a large enough sample size the value of τ  will exceed unity, therefore rule (3.58) 
will dictate that no variable should be deleted from the true equation. Thus we may state 
that the gain in the mean square error of an estimate is essentially a small sample 
property of the ordinary least squares estimates due to deletion of a variable for which
 |τ | < 1.

The choice of an estimator in applied econometrics is necessarily dictated by many 
considerations beyond the textbook properties of best linear unbiased estimates. The 
researcher seldom, if ever, knows the true specification and frequently cannot afford to 
include all variables that might seem relevant in explaining the movements of a 
dependent variable. When he includes a variable which does not belong in the true 
specification, he is increasing the variance of the estimates without biasing them. When 
he discards a variable he may be biasing the estimates but gaining in precision. The net 
effect of precision and bias can be more, or less, than with estimating the true relation. 
How much bias a researcher is willing to accept or how much precision he can forego 
depends on the specific situation and on the seriousness of the consequences of the 
results; no general guidelines can be set up.
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3.3 Serial Correlation in the Errors

In some econometric studies the specification that the error terms in each observation 
are drawn independently of other error terms may be inappropriate. For example, in 
cases of expectation models and distributed lag specifications, even though the errors in 
the theoretical model may be independent of each other, those in the estimated equation 
may not be. A frequent case of dependence in error terms occurs in the context of time 
series studies where the errors in one time period are dependent on errors in previous 
periods.

When error terms are serially dependent, ordinary least squares estimation does not yield
the best linear unbiased estimates, even if the estimated equation is the truth. In order to 
study the distributional properties of ordinary least squares estimates in such a case, let 
us consider a simple specification in which the error terms are generated by a first order 
Markov scheme:

                            ε t = ρ ε t−1 + υ t ,                                           (3.60)

where υ  is assumed to be drawn at random from a distribution with mean zero and 
variance σ υ

2 and is distributed independently of past values of the ε 's. 

By squaring equation (3.60) and taking the expected value we see that

                       V (ε ) = ρ 2V (ε )+V (υ )  ,                                      (3.61)

or
                           σ ε

2 = ρ 2σ ε
2+σ υ

2                                                  (3.62)

                            σ ε
2 = σ υ

2 /(1−ρ 2) .                                            (3.63)

Given the value of the parameter ρ , the variance of ε  is related to the variance of υ .

The specification of error terms in the case of a first order Markov scheme may be 
written as
                                  E(ε t) = 0 ,                                                   (3.64)

                                  E(ε tε t−s) = ρ sσ ε
2  .                                     (3.65)

Let us consider the simple case in which the truth is

                                  y t = β x t + ε t  .                                           (3.66)     
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The ordinary least squares estimation yields

                                E( β̂ ) = β +E(Σ x tε t / Σ x t
2) .                                      (3.67)

Since E(ε t) = 0 and the x's are assumed to be fixed in repeated samples, the estimate β̂  
is still unbiased. The serial correlation in the error terms does not introduce any bias in 
the regression estimates as long as we retain specification (3.64).
 
However, when the error terms are serially correlated the precision of the estimate β̂  
depends on the serial correlation parameter as well as on the process generating the 
independent variable. Consider the variance of β̂ :

                         V (β̂ ) = E [ β̂ −E(β̂ )]2                                                        (3.68)
                                   =  E [Σ x tε t /Σ x t

2]2                                                         (3.69)

                                   =  (1 /Σ x t
2)2 . E [x1

2ε 1
2+x2

2ε 2
2+...+2. x1 x2ε 1ε 2+... ]           (3.70)

Since the x's are assumed to be fixed, using the specifications of the error terms (3.64) 
and (3.65) we obtain

                          V (β̂ ) = (1 /Σ x t
2)2 .σ ε

2 . [Σ x t
2+2 Σρ s Σ x t . x t+s ] .                   (3.71)

 
When the error terms are serially independent (ρ  = 0), then the variance of the estimate 
depends only on Σ x2 and σ ε

2; but when the errors are serially correlated the variance of β̂  
depends also on the terms Σ x t . x t+s .

To incorporate the information on the independent variable as well as the error term, let 
us consider a simple case in which the independent variable is also generated by a first 
order Markov scheme:

                       x t = λ x t−1 + wt ,                                                                       (3.72)

where w, is serially independent and has a statistical distribution with mean zero and 
variance σ w

2 . By assuming that the w's are independent of past values of the x's, we can 
use the following approximation to simplify the algebra:

                                     Σ x t xt+s ≃ λ s Σ x t
2  .                                                         (3.73)

Since λ is a fraction λ s converges to zero as s increases.

When the x's are generated by a first order Markov scheme with parameter λ, expression
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(3.71) may be written as

                       V (β̂ ) = (1 /Σ x t
2)2 .σ ε

2 .[Σ x t
2(1+2Σρ s λ s)]

                                 =  (σ ε
2/ Σ xt

2)[1+2ρ λ (1+ρ λ+ρ 2λ 2+...)]
                                 =  (σ ε

2/ Σ xt
2)[1+2ρ λ /(1−ρ λ )]

                                 =  (σ ε
2/ Σ xt

2)(1+ρ λ )/(1−ρ λ) .                                               (3.74)

In this example the precision of the least squares estimate depends also on how the 
independent variable and the error terms are generated. The precision increases with the 
magnitude of ρ  and λ  when they are of the opposite sign and decreases when they are of
the same sign.

When the error terms are serially correlated, the ordinary least squares estimate, though 
unbiased, does not have minimum variance. According to the well known Gauss-
Markov theorem, the ordinary least squares estimate is the minimum-variance unbiased 
estimate only when the error terms are serially independent and have the same variance 
for all observations. If the researcher knows the value of the parameter, ρ , then, by a 
suitable linear transformation of the variables, he can reduce equation (3.66) to a form in
which the ordinary least squares estimation provides such minimum-variance estimates.

To explain this procedure: when the parameter ρ  is known, the following transformation
on the error terms generates a new error term which is serially independent:

                              ε * = ε t−ρ ε t−1  .                                                              (3.75)

Since ε * is nothing but υ  in equation (3.60), which is by specification serially 
independent and has the same variance for all observations, it satisfies all requirements 
for ordinary least squares estimation to yield the minimum variance estimate. Consider 
equation (3.66) corresponding to time periods t and t-1.

                             y t = β x t + ε t  ,                                                              (3.76)
                          y t−1 = β x t−1 + ε t−1  .                                                       (3.77)

By multiplying equation (3.77) by ρ  and then subtracting it from equation (3.76) we 
obtain

                         ( y t−ρ y t−1) = β (x t−ρ x t−1)+(ε t−ρ ε t−1) .                         (3.78)

By defining variables y* and x*  as (y t−ρ y t−1) and (x t−ρ x t−1) respectively, we may 
rewrite equation (3.78) as

                                                      Bias and Precision                                                      page   15



                          y t
* = β x t

* + ε t
*  .                                                                       (3.79)

    
In this equation the error terms are serially independent and are drawn from statistical 
distributions with the same variance. However, the equation is based on only T - 1 
observations, whereas there are T observations in all. The observation corresponding to
y1

* and x1
*, is not defined because it involves observation corresponding to time period 0. 

This problem can be overcome by noting that the expected value of ε 1
  is zero with 

variance σ υ
2/(1 - ρ 2). By a suitable transformation on ε 1

  we can obtain ε 1
*, which will have

the same statistical properties as that of the other ε * 's. Since (1- ρ 2) is a constant, 
the following transformation on ε 1

  will provide the required ε 1
* :

                                 ε 1
* = √(1−ρ 2)ε 1 .                                                             (3.80)

To obtain ε 1
* in the regression equation we have to transform the dependent and the 

independent variables as well. The y1
* and x1

* are therefore √1−ρ 2 y1 and √1−ρ 2x1 
respectively.

 By including the first observation also in equation (3.79) we have T observations. The 
ordinary least squares estimation based on the T transformed variables yields the 
unbiased minimum variance estimate of β .

The estimation of parameter β  from these transformed variables is called 
generalized least squares, to distinguish it from the estimation using untransformed 
variables in equation (3.66). This estimation procedure is very general and can be 
applied to a regression with several independent variables. 

Consider the general case in which

                        Y t = β 0 + β 1 X 1t + β 2 X 2 t + ... + β k X kt + ε t ,                    (3.81)

where the error term ε  is generated by a first order Markov scheme with parameter ρ . 
The generalized least squares estimates of the β 's, which are the minimum-variance 
unbiased estimates, are obtained by applying ordinary least squares estimation to the 
following regression equation in which all the variables, dependent and independent, are
transformed:
                          Y t

* = β 0
* + β 1 X 1t

* + β 2 X 2 t
* + ... + β k X kt

* + ε t
*.          (3.82)

In (3.82) the transformed variables are obtained as
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                          Y t
* = Y t−ρ Y t−1 ,                                                                 (3.83)

                         X it
* = X i t−ρ X i t−1,                                                              (3.84)

                          Y 1
* = √(1−ρ 2)Y 1 ,                                                               (3.85)

                          X i1
* = √(1−ρ 2)X i 1                                                              (3.86)

Although the generalized least squares estimates are minimum-variance unbiased 
estimates, they cannot be attained, because they involve the parameter value ρ  which is 
rarely known to the researcher.

When the researcher suspects that the error terms are serially correlated and believes that
the value is some specified value, say ρ *, he can obtain the estimates from the 
transformed variables by treating the specified ρ * as though it were the true parameter. 
When the true parameter value ρ  is different fromρ *, the estimates of the β 's from the 
transformed variables are no longer the minimum-variance unbiased estimates.

Sometimes, even when the error terms were generated by a first order Markov scheme, 
the use of a valueρ * different from ρ  can yield estimates that are even less efficient than 
those yielded by ordinary least squares estimation from the untransformed variables.

To study the consequences of using the wrong value ρ * for ρ  in such a case, let us 
consider a situation having one independent variable (3.66), in which the errors were 
generated by the first order Markov scheme with parameter ρ , and the independent 
variable is also generated by a first order Markov scheme with parameter λ  as in (3.72). 
To simplify the algebra, let us consider the case with only T-1 observations, in which the
transformations on dependent and independent variables using a value ρ * for ρ  are

                         y t
* = y t−ρ * y t−1                                                                   (3.87)

                         x t
* = xt−ρ * xt−1                                                                    (3.88)

After transforming the variables as in (3.87) and (3.88), the researcher estimates the 
regression equation:

                               y t
* = β̂ * x t

* + et ,                                                            (3.89)

where
                    β̂ * = Σ yt

* xt
* /Σ(x t

*)2 .                                                                              (3.90)

By expressing the transformed variables in the form of the original variables the 
researcher obtains
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            β̂ * = β +
Σ(xt−ρ * x t−1)(ε t−ρ *ε t−1)

Σ(x t−ρ * x t−1)
2  .                                                             (3.91)

Since the expected value of ε  is zero, β̂ * is an unbiased estimate of β  irrespective of the 
value of ρ *. The estimate β̂ * has a theoretical distribution with mean β  and variance 
given by

            V (β̂ *) = E[ Σ(xt−ρ * x t−1)(ε t−ρ *ε t−1)
Σ(x t−ρ * x t−1)

2 ]
2

                                                            (3.92)

                       =  
1

[Σ(x t−ρ * x t−1)
2]2

.{Σ(x t−ρ * x t−1)
2 E(ε t−ρ *ε t−1)

2

                       + 2ΣΣ(x t−ρ * x t−1)(xt+ s−ρ * x t+s−1) . E [(ε t−ρ *ε t−1)(ε t+s−ρ *ε t+s−1)]} .       (3.93)

To simplify the algebra involved, we may use the following approximations:

            Σ(x t−ρ * x t−1)
2 ≃ Σ x t

2(1+ρ *2−2ρ * λ)                                                                   (3.94)

            Σ(x t−ρ * x t−1)(xt+ s−ρ * x t+ s−1) ≃ λ s−1(λ−ρ *)(1−λ ρ *)Σ x t
2                                 (3.95)

            E(ε t−ρ *ε t−1)
2 = σ ε

2(1+ρ *2−2 ρ * ρ )                                                                     (3.96)

            E [(ε t−ρ *ε t−1)(ε t+ s−ρ *ε t+s−1)] = ρ s−1(ρ−ρ *)(1−ρ ρ *)σ ε
2 .                               (3.97)     

By use of the expressions in (3.94) through (3.97), the variance of β̂ * may be simplified 
to

       V (β̂ *) ≃ σ ε
2

Σ xt
2

.
(1+ρ *2−2 ρ *λ)(1+ρ *2−2 ρ * ρ )+2(λ−ρ *)(ρ−ρ *)(1−λ ρ *) ...

(1+ρ *2−2ρ * λ)2       (3.98)

Since Σρ s−1λ s−1 = (1−ρ λ)−1 we can write (3.98) as 

       V (β̂ *) ≃
σ ε

2

Σ xt
2 . [1+ρ *2−2 ρ * ρ

1+ρ *2−2 ρ *λ
+

2(λ−ρ *)(ρ−ρ *)(1−λ ρ *)(1−ρ ρ *)
(1−ρ λ)(1+ρ *2−2 ρ *λ)2 ]                 (3.99)

Since ρ  and λ  are fractions, their higher powers converge to zero.

Though this expression for the variance of β̂ * is messy and probably incomprehensible 
to most readers, it can answer a few specific questions.
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When ρ * = 0 the estimate β̂ * is nothing but the ordinary least squares estimate based on 
T-1 observations. The variance (3.99) for ρ * = 0 is the same as the expression (3.74) 
obtained previously for ordinary least squares.

The least minimum variance obtainable corresponds to the generalized least squares 
estimate when ρ * = ρ . The expression for minimum variance is obtained by replacing ρ * 
by ρ  in (3.99) to obtain

                         V (β̂ *)ρ =
σ ε

2

Σ x t
2 [ 1−ρ 2

1+ρ 2−2 ρ λ ] .                                         (3.100)

Similarly, the variance corresponding to first-difference estimates can be obtained by 
replacing ρ * with 1.

The information contained in the expression for variance (3.99) can also be summarized 
by defining the relative efficiency of an estimate obtained through use of a value of ρ * 
different from ρ  as

                         EFF=V ( β̂ *)ρ / V ( β̂ *)ρ*  .                                                         (3.101)

Since the relative efficiency of the estimate depends on ρ *, ρ , and λ, let us plot the 
relative efficiency with respect to ρ * and λ for two arbitrarily selected values of ρ , 
namely ρ  = 0.2 and 0.6. These plots are given in Figures 3.1 and 3.2.

When the ρ * is different from the true value of the parameter ρ , the loss in precision of 
the estimation from the transformed variables can be extremely large. To take a few 
examples, let us consider the situation in which the true ρ  = 0.2. The researcher suspects
serial correlation in the errors but does not know the true value of ρ . Suppose he 
suspects the parameter to be “high” and selects ρ * = 0.8. In this situation he has the 
following alternatives: (1) to stop with the ordinary least squares, (2) to estimate the 
parameters from the transformed variables using ρ * = 0.8, or (3) to use first-difference 
estimates. 

As can be seen from Figure 3.1, the relative efficiencies of these alternatives are 
different for different values of λ, the serial correlation in the independent variable. 
When the independent variable is “trending,” the parameter λ is large. Consider an 
economic series with λ = 0.8 as an independent variable. Of all the three estimates, 
ordinary least squares has maximum precision.

When researchers suspect high serial correlation in the errors they usually go ahead and 
estimate the parameters from the first-difference estimates.
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Figures 3.1 and 3.2 show that a considerable amount of precision can be gained by 
resisting this temptation. The gain is substantial when the independent variable has 
“high” serial correlation, which is generally the case with economic time series data. 
Suppose the researcher suspects high serial correlation in the errors in the neighborhood 
of, say, 0.6 and instead of going to the first-difference estimates he uses an arbitrary 
value of ρ * from the interval (0.4 - 0.99); he will then obtain estimates with higher 
precision than the first-difference estimates.

In a practical situation, however, he rarely knows the parameter values. Unless the 
theory explicitly states it, there may be no strong reason to suspect any serial correlation 
in the error terms. Some researchers tend to blame serial correlation whenever their 
results are difficult to interpret, but such an attitude sometimes leads to serious 
consequences. 

To illustrate the point, let us consider the case in which there is no serial correlation 
in the errors and the independent variables; that is, ρ  = λ  = 0.

In this case β̂ * is an unbiased estimate of β  and the variance obtained from (3.99) is

                    V (β̂ *) = σ ε
2

Σ x t
2 [1+

ρ *2

(1+ρ *2)2 ] .                                                    (3.102)

The least variance is obtained when the arbitrary value ρ * is equal to the true value of 
the parameter 0. (Remember, the true model has no serial correlation.) Whenever the 
value of ρ * differs from zero, the variance is larger than the estimate using the true value
of zero. When the true errors are, in fact, serially independent and the researcher 
suspecting serial correlation employs an arbitrary value to gain precision, he will 
actually be losing precision by so doing. Conversely, when the errors are serially 
correlated he may be able to increase the precision of the estimate (compared to the 
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ordinary least squares approach) provided that he can obtain a “good” value of ρ *. If the 
ρ * value increases the variance of the estimate relative to ordinary least squares, then he 
may prefer to settle for the latter estimation procedure even though it does not provide 
the “best” estimate, for the alternative is even worse.

Typically the researcher obtains a ρ * from the residuals of ordinary least squares 
estimation of (3.81) as

                         ρ * = Σe t e t−1/Σe t−1
2   .                                          (3.103)

 Estimate ρ * is not the true value ρ  and has a statistical distribution. It is consistent but 
generally biased in small samples, the bias being negative and of the order of (ρ /T) in 
magnitude. When the independent variables in the estimated regression are also serially 
correlated, then the bias depends also on the parameters that generated their serial 
correlation. In the present case, in which ρ  and λ are the parameters of serial correlation 
in the errors and in the independent variable respectively, the bias in ρ * is of the order of
magnitude of [(ρ  +λ))/T].

Estimate ρ * as obtained in (3.103) has a variance. The variance of ρ * is of the order of 
(1/7). For example, with a sample size of 49, the variance of ρ  is approximately (1/49) 
and the standard deviation is approximately (1/7). 

In the case of serially independent errors the two-sigma limits for ρ * cover the range (-
0.3 to +0.3). When the sample size is small, even though the true errors are serially 
independent, the chance is very high that ρ * (obtained from the residuals in (3.103)) will 
show a sizable value. The researcher trying to improve the precision of his estimates 
should therefore be judicious in his selection of the arbitrary value for ρ *.

3.4 Heteroscedasticity in Errors

Another situation in which the ordinary least squares method does not produce the best 
linear unbiased estimates occurs when the variance of the error term differs among 
various observations—that is, is non-constant. In such cases even though the errors in 
different observations are drawn at random, they are drawn from different distributions 
with zero means but different variances.

Consider the specification

                        y t = β 1 x1t + β 2 x2t + ... + β k xkt + ε t ,                                    (3.104)
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                  E(ε t) = 0 ,                                                                                              (3.105)
                  E(ε t

2) = σ ε t

2   .                                                                                          (3.106)

In this specification all the errors are drawn from statistical distributions with zero mean 
but having different variances as indicated by the subscript of σ ε

2 in (3.106).

Estimation of equation (3.104) by ordinary least squares, therefore, does not yield the 
best linear unbiased estimates because of the lack of constant variance in the error term. 
However, if the researcher knows the individual variances, σ ε t

2 's, then he can use the 
following transformation on the variables:

                             y t
/ = y t /σ ε t

 ,                                                                           (3.107)

                             x t
/ = x t /σ ε t

 .                                                                            (3.108)

Instead of estimating equation (3.104), he may then estimate the following:

                           y t
/ = β 1 x1 t

/ + β 2 x2 t
/ + ... + β k xkt

/ + ε t
/  .                           (3.109)

This is a reduced form of equation (3.104), obtained by dividing each of the 
observations by the corresponding standard deviation of its error term. 

Hence, the error term in (3.109) is

                           ε t
/ = ε t /σ ε t

                                                                                 (3.110)

  
By assumption (3.106), the variance of the error term ε t is σ ε t

2 ; hence,

                            V (ε t
/) = σ ε t

2 /σ ε t

2 = 1 .                                                              (3.111)

That is, the transforming of (3.104) as indicated yields a regression equation with 
constant variance.

In the transformation version the error terms are serially independent and have the same 
variance, satisfying the assumptions under which the ordinary least squares estimation is
best. Estimation of equation (3.109) yields the best linear unbiased estimates for the β 's.

This technique has little relevance to empirical work because the researcher rarely 
knows the variances of the error terms, except that in some situations he may know the 
variance up to a constant of proportionality. That is, he may believe that the error term 
has a variance proportional to a quantifiable variable. 
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Consider, for example, the following linear curve of crude oil requirements for 
refineries:

                 Y t = β 0 + β 1 X 1t + β 2 X 2 t + β 3 X3 t + ε t ,                               (3.112)

where Y is the crude oil and X1, X2 , and X3 are gasoline, kerosene, and fuel oil 
respectively.

The refineries are of different sizes, and small refineries may perhaps be expected to 
exhibit small variance in the error term and large refineries to exhibit larger variance, 
even though the requirement function is assumed to be the same for all refineries. The 
nature of the variance of the error term may be specified as

                         V (ε t) = X 4 t
2 . k  ,                                                                      (3.113)

where k is a constant of proportionality and X 4 t, is the capacity of the tth refinery.

In this case the transformation of the variables is of the form

                          Y t
/ = Y t / X 4 t ,                                                                         (3.114)

                  
                          X it

/ = X it /X 4 t i=1,2,3                                                      (3.115)

This transformation adjusts the equation in such a way that its reduced form satisfies all 
conditions for the least squares estimation to yield best linear unbiased estimates. The 
data on the capacity of the refineries are available, hence equation (3.109) can be 
estimated.

The estimated equation is

                (Y t /X 4 t) = β̂ +β̂ 0(1 /X 4 t)+β̂ 1(X 1t / X 4 t)+ β̂ 2(X2 t /X 4 t)+β̂ 3(X 3 t /X 4 t)+e t   ,       (3.116)

where the constant term (β ) is introduced even though it is not present in equation 
(3.112) to make the summary statistics meaningful.

Another frequent example occurs when the data come from a published source in which 
the agency compiling information reports aggregate results rather than individual 
observations. For example, the Bureau of the Census reports only the aggregate income 
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of all families in given geographic localities. 

If the researcher believes that the variance of the error term is the same to each 
individual, then the variance of error in the aggregate corresponding to each locality 
cannot be the same unless the number of individuals in each is the same. When data on 
the number of individuals in each aggregate are also given, which is generally true in 
such reports, the researcher can use that information in transforming the variables to 
improve the precision of his estimates.

                                                      Bias and Precision                                                      page   24


