
Some Notes on Misspecification in Multiple Regressions 

In  empirical research one often faces the problem of 
estimating a misspecified model. Misspecification can 
arise either because of omission of a variable specified 
by the truth, the case of the left out variable, or because 
of inclusion of a variable not specified by the truth, the 
case of the irrelevant variable. Ahspecification is 
usually interpreted as a case of left out variables, and 
many researchers are concerned only with the bias 
resulting from it, the specification bias. Researchers 
seldom pay attention to the other aspects of mis- 
specification. In  particular, little note is made of the 
consequences of irrelevant variables, or of the effects 
of misspecification on the variance and mean square 
error of the regression estimates. This is mainly because 
these results are not readily available.’ In  view of the 
importancc of these aspects of misspecification in 
empirical research, some major results of misspecifica- 
tion are presented in this paper with simple proofs. 

We shall consider the classical linear regression model 
where all the independent variables are nonstochastic 
and the error terms are homoscedastic and serially 
independent. Let the two regression equations, of which 
only one is the truth, be : 

yl = 01x11 + 02x21 + ‘‘ ‘ + B k x k l  + 71 (1) 

t =  1 , 2 , . . . , T .  (2) 

yl = ‘&Xll + CY2x21 f ‘ ’  ’ + a k x k t  + CYk+lxk+ll  + € 1  

When equation (1) is the truth, equation (2) is a 
misspecified model because of the presence of the 
irrelevant variable x k + l .  When equation (2) is the truth, 
equation (1) is a misspecified model because of the left 
out variable x k + l .  These two equations may be written 
in the matrix form as: 

Y = X 0 + 7  (3)  

Y = X C Y + ,  (4) 

where Y is a vector of observations on the dependent 
variable, and X and are matrices of independent 
variables in the equations (1) and (2) respectively. 
Without any loss of generality the equation (3) may 
be rewritten as: 

y = [xxk+l] [ :] f 7 (5) 
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implications of their results for misspecification problems failed 
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where X k + 1  is a vector of observations on the independ- 
ent variable z k + l .  

Theorem 1: I n  the classical linear regression model, 
omission of a variable specified by the truth introduces bias 
in all the least squares estimates. 

This theorem is well known. (For example, see 
Griliches [l].) For consistency of notation we shall 
restate the proof. Let (2) be the truth, and let a mis- 
specified model, given by equation ( 1 ) ,  be estimated. 
The least squares estimates of the 0’s in equation (1) 
are given by: 

p = (X’X) -1X‘Y .  (6) 

Since equation (2) is the truth we may rewrite equation 
(6) as: 

a = (X’X)-’X1(8CY + e) 

= ( X ’ X )  -1X’XrY + ( X ’ X )  -1X’c (7) 

Since all the independent variables are nonstochastic 
we have : 

E(B)  = (X’X)-’XlXCY. (8) 

Equation (8) may be rewritten as: 

E (a) = (x’x) -’x’ (XXk+l)  a 

= (fYlCY2 . . . CYk) ’ + CYk+l (X’X)-’X’Xk+1. (9) 

To facilitate the interpretation of the results we shall 
introduce an auxiliary regression equation in Yule’s 
notation asz: 

zk+l = bk+1,1 .23  ... k z l  + b k f 1 . 2 . 1 3  ... k x 2  

+ ’ ’  ’ + b k + l , k . n  ... k-1Zk + e k + l  (10) 
where the b’s are the ordinary least squares  estimate^,^ 
and ek+’ is the residual. The auxiliary regression equa- 
tion (10) is introduced only as an algebraic convenience 
and need not have any causal interpretation. 

The expected value of the regression coefficient of 
the independent variable x1 may be written as: 

E(Bi) = CYi + a k + i * b k + i , i  .za... k .  (11) 

The bias in the regression coefficient (81) is proportional 
to the auxiliary regression coefficient b k + 1 , 1 . 2 3 . .  .k .  When 

2 In this notation the first subscript denotes the dependent 
variable, second subscript denotes the independent variable 
corresponding to the b, and the rest of the subscripts separated 
from the first two by a period (.) denote the other independent 
variables present in the regression equation. Since the values 
of b’s change with the independent variables present in a regres- 
sion all the subscripts are relevant in identifying the b’s. For 
further details on the notation see Yule and Kendall [5], p. 284. 

a Note that these b’s are not used as statistical estimates of any 
parameters. They are used as algebraic equivalents of the ex- 
pressions one would obtain if equation (10) were estimated by 
least squares. 
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thr  auxiliary rrgrrssion corfficirnt is zwo, thrn, of 
eoursc, th r  bias is xrro; but this cnscl is raro in clmpiricnl 
~ 0 1 - k . ~  Since thr  choicr of thr first indrpcndrnt varinblr 
is :Lrbitrnry, thr  rmult in rquntion (11) holds for all 
t hr indrprndrnt variablrs. 
Throrrm 2:  I H  the classical littear regression model, 
ornissioii of a variable specified by  the truth decreases the 
oariauce of all the least squares estimates. 

Lrt th(. truth b(, givrn by rquation (2) and the 
missprcificid modrl br rquntion (1) , so that the left out 
variable is z k + 1 .  The bast  squarrs estimatrs of the 0’s 
are givrn by equation ( 6 ) .  The variance of the estimate 
vector j is: 

= EC(B - E ( B ) )  ( P  - E0))’I 
= E [  ( X ’ X )  -1X‘tt’X ( X ‘ X )  -11 = (r: ( X ’ X )  -1 

(12) 
Lrt  us consider the variance of the regression coeffi- 

cirnt corresponding to  the independent! variable XI. 
The variance of the regression coefficients may be 
rewritten in the partitioned matrix form as: 

Xl’X1 Xl’Z -1 

V ( 8 )  = ...[z‘xl Z I Z ]  (13) 

”3 c [ 

where X1 is a vector: of observations on the independent 
variable X I ,  and Z is a matrix cf observations on the 
rest of the independent variables in equation (1).  
Using the partitioned matrix inversion rule we have: 

(Xl’Xl - Xl’Z ( Z ’ Z )  - ‘ E X , )  -1 

B 

(14) 

V ( j )  = (r: 

where A and B are vectors, and C is a matrix. The 
variance of the regression coefficient & is therefore: 

V(b1) = (re2(X1’X1 - Xl‘Z(Z’Z) - lZ‘Xl ) - l  (15) 

To be able to  interpret the expression given in 
equation (15), consider the following auxiliary regres- 
sion equation: 

X i  = b12.34 ... k x 2  f bi3 .24  ... k x a  -k * - - -k b i k  .a,.. k - i x k  -k el 

(16) 
where the b’s are the least squares estimntes, and el is 
the residual. The residual sum of squares in the auxiliary 
regression equation (ze?) may be written in Yule’s 
notation as;  

(17) S 2 1 . 2 3 , . , k  = Ze12 = X1’Xl  - X , ’ Z ( Z ’ Z ) - l Z ’ X , .  

Hence the variance of fil may be rewritten as: 

v(81) = r?/S21.23 ... k .  (18) 
It is well known that the variance of the least squares 

estimates of the true equation (2) are: 

V ( & )  = (r:(X’X)-l .  (19) 

By using t.hc abovct analysis NT may wit(!  thr: variancr. 
of & as: 

V ( & )  = U,?/S21.?3  . . .  k . k + l  ( 20) 

whwc 8 2 1 . 2 3 . . . k , k + 1  is thc rcssidunl sum of squarrs in a11 

auxiliary rrgrrssion with z1 as thc dvpcmdrnt vnriahlc 
and (zzJ . . . , xkJ ~ l t + ~ )  as thr: indqxmlrrnt variablrbs. 
Since thr  rwidual sum of squarcs cannot incrcbnsc! by 
adding an indepcndcnt variablc to a rrgrcssion (quation, 
i t  foIlows that thr: residual sum of squarcbs %.?,,, , k , k i l  

cannot bc larger than S 2 1 . 2 3 . . . k .  Hence vie have the 
inequality: 

V(B1) I V(61). (21) 
This inequality becomes an qua l i ty  only when the 

partial relation between the indepcndcnt variable z1 
and the left out variable z k + 1  holding ( 2 2 ,  . . . , z k )  

constant is zero; this case seldom arises in empirical 
work. Since the choice of zl is arbitrary, the inequality 
(21) holds for all coefficients. 
Theorem 3 :  I n  the classical linear regression model, 
discarding an independent variable whose parameter 
value is smaller ( i n  magnitude) than the theoretical 
standard deviation of its estimate (from given data) 
will decrease the mean square error of all the least squares 
estimates. 

We have shown that when equation (2) is the truth, 
and equation (1) is estimated, the regression coefficimts 
are biased but have smaller variance when compared to 
the corresponding estimates from the true modrl. The 
Mean Square Error (MSE) may, however, increase or 
decrease depending on whether the gain in variance is 
compensated by the loss in the bias or not. The mean 
square errors in the two cases are : 

MSE ( 6 1 )  = &+l * b 2 k + i , i  23.. + g.“/S2i 2 3 , .  .L (22) 

(23) 
To simplify the algebra we shall use the following 

properties of least squares estimates due to  Yule and 
Kendall C5-J 

(24) 

J.ISE(&l) = ge2/S21.23 ... k . k + l .  

S21.23 ... k,k+l = S21.23 ... k (  1 - r21,k+1 . 2 3 . . .  k) 

S k + 1 . 2 3  ... k 
b k + 1 , 1 . 2 3  ... k = r19k+1.23...k’ 7 (25) 

3 1 . 2 3 . .  .k 

where r l , k + 1 . 2 3 . .  .k  is the partial correlation between the 
variables z1 and zk+l keeping all the other independent 
variables (zzl z3, . . . , zI-) constant.? Using the relations 
(24) and (25) , we may rewritr the m r m  square rrrors 
of the estimates and h1 as: 

(36) 

RlSE ($1) = (37) 
U r2  

S21.? 3 . . .  t(1 - r?l.k+l.?~ ..A) 

The conditions under which the mcan square error of 

4 In many practical situations the extent of bias may be smaller 
than the rounding error in truncating the decimal places. In 
empirical research what is relevant is the extent of bias and not 
its mere presence. 

6 Wallace [3] proved this Theorem in a case of only two inde- 
pendent variables. His aniilysis does not lead to generalization. 

6 See Yule and Kendall [5], p. 287. 
’ Note that r l .  t + i . z S  ... k = T t + i .  1.1s. . . t  

38 The American Statistician, December 1971 



b1 is smaller than that of &I may be obtained as: 

s 2 k + 1 . 2 3  ... k 62 
a 2 k + l ’  r21.k+1.23.. . k .  +- 

s’1.23 ... k s 2 1 , 2 3 . . . k  

By rearrangement of terms: 

S2k+l .23. .  .k 

8’1 2 3 .  . .k 
U2k+1‘ r21.k+1.23.. .k 

<L( 1 

- s21.23 ... k 1 - f 2 1 , k + 1 . 2 3  ... k 

ff2k+l‘S2k+l.W ... k ( 1  - T21.k+1.23 ... k )  5 ue2 (30) 
Since 

S2k+1.123 ... k = s 2 k + 1 . 2 3  ... k (  1 - r21,k+1 . 2 3 . . . k )  (31) 

we may rewrite equation (30) as: 

e2 
(32) 

a2k+1 S2k+l .123., .k 
But the variance of the estimate &k+l in the true 
equation (2) is given by 

v(;k+l) = ~ . 2 / ~ 2 1 + 1 . 1 2 3 . .  . k .  (33) 

Therefore the condition under which the mean square 
error of j l  is smaller than that of G1 is given by: 

a 2 k + l  5 v ( G k + l )  (34) 

(35) 
or 

I a k + 1  I 5 (v(bk+l) ) “’- 
That is, when the absolute value of the parameter 

a k + l  is smaller than the theoretical standard deviation of 
the estimate G k + l 1  the mean square error of bl would be 
decreased by discarding the variable xk+l. Since the 
choice of the independent variable x1 is arbitrary, the 
relation holds for all the independent variables. 
Theorem 4: I n  the classical linear regression model, 
inclusion of an irrelevant variable does not introduce bias 
i n  the least squares estimates. 

Let the truth be given by equation ( l ) ,  and let the 
misspecified model, equation (2) , with the irrelevant 
variable x k + l  be estimated. The least squares estimate of 
the misspecified model, equation (2) , is given by : 

& = ( p X ) - l p y .  (36) 

Since equation (1) , which may be written without loss 
of generality as equation (5) ,  is the truth, we may 
rewrite equation (36) as: 

hence 

E ( 6 )  = [:I. (38) 

Estimation of the true equation (1) gives: 

E(B)  = P. (39) 

Thus the estimates from the misspecified model (2) , 
when equation (1) is the truth, are unbiased. 
Theorem 5 :  I n  the classical linear regression model, 
inclusion of an irrelevant variable increases the variance 
of all the least squares estimates. 

When equation (1) is the truth, and equation (2) is 
estimated, the variance of the least squares estimates, 
given by equation (37) is: 

V ( & )  = u:(X‘X)-1.  (40) 

The variance of the least squares estimates when the 
true equation (1) is estimated is: 

v(p) = u,”(X’X)-1. (41) 

Using the analysis in the derivation of inequality (21) , 
we can show that 

V ( & )  2 V ( 8 1 ) .  (42) 
Even though an irrelevant variable does not introduce 

any bias in the regression coefficients, its presence 
increases the variance of all the regression coefficients. 
Theorem 6 : I n  the classical linear regression model, 
inclusion of an irrelevant variable increases the mean 
square error of all the least squares estimates. 

Proof is obvious from theorems (4) and (5). 
The results presented in this paper serve as theoretical 

guide lines in empirical research. Though these results 
do not provide practical rules on when to omit or 
include a variable on the basis of summary statistics, 
they provide some light on the consequences of omission 
or inclusion of a variable. For example, when a re- 
searcher is interested in using the regression estimates in 
decision making, he wants the least mean square error 
estimates rather than the best linear unbiased estimates. 
In  such a case the researcher may “gain” by excluding 
a variable even though the truth specifies the variable 
as a part of the multiple regression. In  some empirical 
studies researchers add variables to maximize R2, or 
some other summary statistic, even though there are no 
theoretical reasons for their inclusion in the regression 
equation. The theoretical guide lines presented in this 
papcr indicate that such a procedure may result in 
loss of “efficiency.” 
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