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In a linear regression model, when errors are autocorrelated, several 
asymptotically efficient estimators of parameters have been suggested 
in the literature. In this paper we study their small sample efficiency 
using Monte Carlo methods. 

While none of these estimators turns out to be distinctly superior to 
the others over the entire range of parameters, there is a definite gain 
in efficiency to be had from using some two-stage procedure in the 
presence of moderate high levels of serial correlation in the residuals 
and very little loss from using such methods when the true p is small. 
Where computational costs are a consideration a mixed strategy of 
switching to a second stage only if the estimated p is higher than some 
critical value is suggested and is shown to perform quite well over the 
whole parameter range. 

1. INTRODUCTION 

IN THE standard linear regression model autocorrelation of the disturbances 
leads to inefficient but still unbiased estimates of the coefficients. Since the 

autocorrelation parameters of the disturbances are rarely known a priori, one 
cannot use minimum variance Generalized Least Squares methods directly. 
Several two-stage estimation procedures have been suggested in the literature 
and it has also been shown that if the first-stage estimates of the variance- 
covariance matrix of the errors are consistent, the resulting second stage esti- 
mators are also consistent and asymptotically efficient. Little is known, how- 
ever, about the small sample properties of such estimators. Does the use of a 
consistent but often relatively poor (high variance) estimator of the serial 
correlation coefficient from the computed first stage residuals "really" reduce 
the variance of the second stage estimators? The purpose of this paper is to 
report on a Monte-Carlo study of this question. Before presenting the results of 
the investigation we first describe the model, its theoretical properties, and the 
estimates compared in this study. 

2. THEORETICAL CONSIDERATIONS 

We consider the following model: 

yt = /Xt + Ut, 

Xt XXt-i + Vt, 

Ut = Put-i + Wt, 

E(Vt) - E(wt) E(vtwt) = E(Wtwt_) = E(vtvt-i) 0, 

E(vI) = ?v, E(,) WI ?w I XI < 1, I PI <1 

* This work has been supported by grants from the Ford and National Science Foundations. 
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and 
t = 1, 2, 3, ** *,T. 

Assume that the stationary processes generating u and x started in the past 
and continue to operate. This is similar to assuming that the initial values of 
u and x are drawn from a ilormal population with zero means and variances 
2 /lp2 and 2 O' /(1= p2) anda ,=of2/(1-X2) respectively. We consider all the variables 

as deviations from their means and hence do not include a constant term 
explicitly in the model. 

The covariance matrix of the error vector is: 

1 P p2 . Ep]T-1- 
p p * . . pT-2 

E(uu')R = 2 p2 T-3 

pT-1 pT-2 pT-3 . . p _ 

There are several ways of estimnating A from a given sample: 

1) Generalized Least Squares (G.L.S.): 

This procedure is possible only when p is known. The G.L.S. estimator is 
given by 

bG = (x'R-1x)-1x'R-y, 
and 

V(bG) = (x'R-1x)-1. 

It is a minimum variance linear unbiased estimator. A large sample approxi- 
mation to its variance is obtained as follows: 

-1 -p ? * ?-Xi 
-p + p2 _p * 0 X2 

x'R-x - (XlX2 . .XT)(_p2)2i 0 -p I + p2 , 

_ O p _Lz 

(1 p)c~ (f E + p2SX - 2p 
XtXt_1) 

l/2T(2Ext + P E xt -2pX E 2 S ) O-u 1 2T- T2 

(1 )u 1 2 1 2 

For large samples we may ignore the last term of the above expression as 
xt and vt?l are not correlated. Thus 

, -1 1 ( 2 |X2 2 2 2 2 T 

X t 
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For reasonably large T the last term in the parenthesis approaches zero and as 
an approximation:' 

2 2 

T 2 1 + p2 - 2pX 
Xt 

2) Ordinary Least Squares (O.L.S.): 

bo (x'x)-'x'y 

The estimator bo is unbiased and its variance is: 

V(bo) =E( xu/2e 

= (1 / E t) E xtut) 

For large samples (see equation 1 of the appendix) we can show that the follow- 
ing approximation holds :2 

Vb u 1 + px 

Hence the efficiency of O.L.S. for reasonably large samples is approximately3 

1-pX 1-p2 
Eff = V(bG)/V(bo)? 

1 + pX 1 + p2 - 2pX 

Since p is in general unknown, several methods of estimating and using the 
result to improve on the efficiency of O.L.S. have been suggested in the litera- 
ture. We shall discuss only four of these: three two-stage methods (Cochrane- 
Orcutt, Durbin, and Prais-Winsten) and one non-linear approach. 

3) The Cochrane and Orcutt estimator (C.O.): 
In their 1949 paper Cochrane and Orcutt [2] suggested the following esti- 

mator for models with autocorrelated errors:' Let P0 be a consistent estimate 
of p from the residuals of O.L.S. Define, 

Z Yt - PoYt-i 

and 

qt = Xt - poxt- 

1 We are ignoring here a term that is approximately equal to - 2p(p - X)/T. It is far from negligible for small T 
and p and X of opposite si. 

2 This formula again overestimates the variance for low T and high p and X. 
3 This expression is the same as the one derived by Johnston [8], p. 191, only when the independent variable is 

either serially uncorrelated (X =0) or has the same autocorrelation coefficient as the errors (X =p). A plot of this 
expression for selected values of X is presented in Malinvaud [101, p. 439. 

4 Actually, Cochrane and Orcutt do not recommend the use of this estimator because of the downward bias 
in Po. They also suggest the possibility of iterating several times more. Nevertheless, since they seem to be the first 
to mention such an estimator, we associate their names with it. 
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then 

Zt =3qt + wt, 

and 

be (q'q)'Iq'z t = 2, 3, , T. 

When po= p, the w's are serially independent and the O.L.S. estimator of A 

based on the above equation has minimum variance.5 But po is estimated from 
the residuals and will therefore usually not equal p. Whenever po deviates from 
p, the C.O. estimator is not the minimum variance estimator. Lower bounds on 
the efficiency of such an estimator have been investigated by Watson and 
Hannan [151. It has not been established, however, whether this estimator is 
better than O.L.S., on the average in small samples. 

The conventional estimator of p from the residuals of O.L.S. is 
T T 

p- etet- l et, 
2 2 

where et is the calculated O.L.S. residual for period t.6 
The first term in the Taylor expansion of E(p) gives terms up to the order 

of (1/T). 

E(A) -- E(Xetet_j)1E(Te 2). 

Using equations 2 and 3 of the appendix we can show that in our model 

1 +p E(Ap)~- -- 

T-1 1 - pX 
1px 

The bias of A is a function of p, T and X. It is often stated that A is biased to- 
wards zero. This is strictly true only if the autocorrelation of the independent 
variable is of the same sign as that of the disturbances.7 

4) The Durbin estimator: 

Durbin t4] suggested an estimator which is essentially the same as the C.O. 
estimator except that po is obtained as the coefficient of ytS- in the following 
regression equation. 

Yt=-PY- pt + oxt 13opxt i + Wt t 2, 3, * * T. 

5 Except for 'end-effects" to be discussed below. 
8 So defined, $ can occasionally exceed unity. When this happens several of the estimators we discuss are not 

defined. In actual computations we have, therefore, set p equal to +1 or - 1, depending on the computed valute, 
whenever the latter exceeded unity. 

7 For the case of k orthogonal independent variables, all generated by first order Markov schemes, we have 
similarly 

k 
kp + 2 Xi 

E(p) p - _ __ _ _ _ _ _ _ _ 

k + Ai 

IJ 
_ 

1 
__ _ 
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In this formulation the w's are serially independent and the O.L.S. estimate 
of the coefficient of yt-i is consistent. Durbin also proves that the resulting 
second stage estimator of A is consistent and asymptotically efficient, 

5) The Prais-Winsten estimator (P. W.).- 

Neither the C.O. or the Durbin procedure is strietly speaking equivalent to 
the G.L.S. procedure even when ,=p. Both are based on a transformation that 
reduces the sample size from T to T-1. While this does not matter in large 
samples, it may make a significant difference in small samples. In an unpub- 
lished Cowles Foundation Discussion Paper, Prais and Winsten [12] pointed 
out in 1954 that the correct diagonalizing transformation matrix is not of the 
T-1 by T form 

0 -p 1 0 
00 O-p I 

implied in the C.O. and Durbin procedures, but rather the T by T matrix 

[V1- P2 0 0 

- P I * 

with the first observation getting the weight of \/i p2 instead of being "thrown 
away." They also pointed out that the loss in efficiency entailed in the usual 
procedure depends critically on how different the beginning x value is from 
the average, and that it could be quite high for trend like x's. In practice, the 
P.W. estimator is equivalent to the C.O. estimator except for the use of one 
additional observation, the first, with the weight v/1 -p2A8 

6) A non-linear estimator: 
In this estimation procedure both j and p are estimated simultaneously using 

the following equation 

t : yt-iY- + #Xt -oPXt-l + 7vt t =2 3, .. *I* T 
but imposing the non-linear constraint 

=fip 

on the estimates. 
Provided that the estimation procedure finds the absolute minimum of the 

residual sum of squares with respect to d and p, the resulting estimates have 
been shown to be maximum likelihood and hence asymptotically efficient by 

8 This was also recognized, implicitly, by Cochrane and Orcutt [21 in their original paper. See the discussion in 
their Appendix. 
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Hildreth [6] and Dhrymes [3]. Since it is not assured that the sample likeli- 
hood function has only one local maximum, Hildreth and Lu [7] and Dhrymes 
suggest computational procedures based on scanning over the whole range of 
p from -1 to + 1 to assure the finding of the global maximum of the likelihood 
function. Their procedures, however, are not well adapted to Monte Carlo 
experiments. On the other hand, "standard" Newton-Raphson and Modified 
Gauss-Newton procedures9 tried by us first failed to converge in many experi- 
ments. An investigation into the numerical properties of these procedures 
revealed that this failure was being caused by the size of the "step" taken by 
these procedures at each iteration. An alternative procedure in which an 
optimal "step" size is computed anew at each iteration on the basis of a 
parabolic approximation was developed by one of the authors.'0 It increased 
the speed of convergence greatly and converged almost always. 

3. DESIGN OF THE EXPERIMENT 

The following model was used to generate observations for the sampling 
experiment: 

yt = 0 + 1.Oxt + Ut., 

Xt =XXt-i + Vt, 

Ut = put-i + wt, t = 1,2,* 2 ,20. 

For any given p and X we drew 50 samples with independent x and u series." 
The initial values for x and u were drawn from normal populations with zero 
means and corresponding variances. v and w were drawn independently from 
normal populations with zero means and variances a' and or respectively. 
The variances of v and w were adjusted so as to make the true square of the 
correlation coefficient between x and y equal to 0.9. Since we are interested 
only in the relative efficiency of the various estimators we set the coefficient 
of x to unity. 

The various two-stage and non-linear estimation procedures were compared 
at intervals of 0.1 for p and 0.2 for X. We restricted our study to stationary 
series only, and hence limited p and X to the range -1 <p, X< 1. 

4. SMALL SAMPLE PROPERTIES OF A 

Since the performance of the various two-stage estimators depends heavily 
on the quality of A used in the second stage, it will help our understanding of 
what follows to review briefly the small sample performance of the three esti- 
mators of p used in this study. Both the C.O. and P.W. methods use as their 
p the serial correlation coefficient of the O.L.S. residuals, the Durbin procedure 

9 See Ilartley [5]. 
10 This procedure is described and compared to the Gauss-Newton alternatives in Rao [13]. It proved efficient 

even in many parameter models with the kind of non-linearity in the parameters discussed in this paper. Of course, 
there are many elaborate non-linear procedures designed to minimize complex functions and based on expensive 
algorithms. The simple procedure alluded to above appears, however, to be quite adequate and efficient for problems 
of non-linearity commonly faced in serial correlation and distributed lag models. An IBM 7094 computer program 
is available from the CMSBE, Graduate School of Business, University of Chicago. 

11 The results reported below are not sensitive to the particular procedure used in choosing the x's. In an earlier 
draft of this paper we kept the x series fixed for a given X, drawing only a new u series for each sample. We did not 
notice any significant differences in the results of the two versions. 
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TABLE 1. REGRESSIONS OF MEAN BIAS OF DIFFERENT p'S ON p AND X 

Coefficients of 
Esti ator ____ ____ ____ ___ ____ ____ ____ ____ ____ ___ Standard error 

Constant of regression 

Non-positive values of p 
O.L.S. -.048 -.195 -.055 .022 

(.004) (.008) (.004) 

Durbin .001 -.106 -.052 .024 
(.004) (.008) (.004) 

Non-Linear -.053 -.154 -.012 .039 
(.007) (.014) (.007) 

Positive values of p 
O.L.S. - .036 -.247 -.057 .029 

(.006) (.010) (.005) 

Durbin -.018 -.057 -.042 .028 
(.006) (.010) (.005) 

Non-Linear -.040 -.188 - .030 .031 
(.007) (.011) (.005) 

Dependent variable: p-p. Numbers in parentheses are the computed standard errors of the respective coeffi- 
cients. The range of the sample is -.9 to .99 for p and -.8 to .99 for X. 

uses the coefficient of Yt-i in the expanded equation as its estimate of p; and 
the non-linear procedure estimates p and j simultaneously. All these estimators 
of p are biased in small samples. No exact analytical expressions are available 
to compare their relative biases (a large sample expression for the bias of the 
O.L.S. residuals based A is given in this paper) and they have thus to be inferred 
from the Monte-Carlo results. 

The Monte Carlo information on the bias of the three estimators of p is 
summarized in a set of regressions presented in Table 1. The dependent variable 
in each of these regressions is the average bias (averaged over 50 samples) at each 
set of p and X. There are 200 such sets in total, but because the results appeared 
to be sensitive to the sign of p, these regressions were run separately for non- 
positive values of p and for p>0. Each regression is thus based on 100 ob- 
servations, and each observation is an average of 50 independent samples for 
a particular p and ."2 

Table 1 indicates that none of the estimators has a uniformly lower bias. 
The Durbin estimator is significantly less biased than the other two for positive 
values of p. For small negative values of p the O.L.S. residuals based A has a 
somewhat smaller bias while the non-linear estimator has the lowest bias for 
large negative values of p. But the superiority of the latter two estimators over 
the Durbin estinmator in the range of negative p's is only slight, while the 
Durbin estimator is significantly less biased for positive p. 

12 These regressions summarize the individual results quite well, the R2's in the A 

dependent form being all in the 
.98-.99 range. 
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TABLE 2. RELATIVE MEAN SQtJARE ERRORS OF DIFFERENT 
ESTIMATORS OF p: AVERAGES OVER ALL X 

MSE " O.L.S. MSE P O.L.S. MSE, i Durbin 

MSE P Durbin MSE P Non-linear MSE P Non-linear 

0.9 4.53 1.20 0.28 
0.8 2.52 1.17 0.49 
0.7 1.88 1.15 0.63 
0. 6 1.54 0.98 0.65 
(.5 1.45 1.06 0.74 
0.4 1.29 0.93 0.75 
0.3 1.07 0.88 0.83 
0.2 0.99 0.88 0.86 
0 .1 0.99 0.93 0.82 
(.0 0.86 0.88 0.92 

-0 .1 0.94 0.84 0.90 
-0.2 0.85 0.85 1.00 
-0.3 0.84 0.90 1.08 
-0.4 0.86 0.93 1.10 
-0.5 0.86 0.98 1.14 
-0 . 6 0.86 1.03 1.20 
-0.7 0.93 1.11 1. 19 
-0.8 1.04 1.43 1.39 
-0.9 1.05 1.29 1.22 

The performance of a particular A depends, however, not only on its average 
bias but also on its variance. Often a less biased estimator may have a higher 
variance cancelling much of the gain from the reduction in bias. To in'vestigate 
this we computed the mean square error (M.S.E.) for each A over the 50 sam- 
ples at each p and X. To convert them into comparable units we divided them 
by the M.S.E. for the other A's, and, since such ratios did not appear to be very 
sensitive to X, we averaged them over all (10) X values. These average M.S.E. 
ratios are reported in Table 2. They again indicate that the Durbin A is signifi- 
cantly better for h'igh positive p, while at the same time not being distinctly 
inferior to the other two methods for negative p's. Again, the non-linear esti- 
mator is better only for large niegative p's. It should come then as n1o surprise 
if the Durbinl second stage estimator of d does quite well in the comparisons 
to follow. 

5. COMPARISON OF THE VARIOUS ESTIMATORS OF 3 

Table 3 summarizes the major results of this study. It presents the average 
performances (averaged over all X) of all the estimators relative to the unat- 
tainable GLS estimator, based on a knowledge of the true p's, and shows that nio 
estimator has a uniformnly lower M.S.E. for all values of p and X. We know that 
the O.L.S. estimator is not efficient in large samples for p5,40. We find that in 
small samples (T=20) the O.L.S. estimator is less efficient than all the other 
methods considered for moderate and high values of p(f p| > .3). All the other 
estimators are not very far apart in their performance. The non-linear estimator 
is somewhat inferior to the two-stage estimators, while the C.O. estimator is 
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TWO-STAGE REGRESSION METHODS 261 
TABLE 3. AVERAGE RELATIVE EFFICIENCY OF DIFFERENT 

ESTIMATORS OF d FOR ALL VALUES OF X 

AVERAGE RATIOS OF MEAN SQUARE ERRORS 

GLS G1S GLS GLS GLS 

W 015OLS PW Ca DURBIN NON-LINEAR 

0.99 0.15 0.65 0.77 0.95 0.7S 

0.9 0.31 0.79 0.80 0.95 C.7E 

0.8 0.35 0.81 0.78 0.90 0.11 

0.7 0.47 0.86 0.80 0.96 0.83 

0.6 0.56 0.87 0.83 0.89 0.78 

0.5 0.74 0.9C 0.86 0.90 0.8= 

0.4 0.79 0.88 0.83 0.84 0.U7 

0.3 0.83 0.93 0.84 0.86 0.79 

0.2 0.94 0.95 0.92 0.95 0.9S 

0.1 0.99 0.93 0.86 0.87 0.82 

0.0 1.00 0.94 0.90 0.90 0.84 

-0.1 0.97 0.95 0.89 0*89 0.83 

-0.2 0.96 0.92 0.83 0.84 0.19 

-0.3 0.90 0.94 0.92 0.91 0.78 

-0.4 0.80 C.97 0.90 0.88 0.81 

-0.5 0.67 0.91 0.85 0.84 0.8C 

-0.6 0.61 0.92 0.82 0.83 C.79 

-0.7 0.43 0.94 0.92 0.93 0.ec 

-0.8 0.31 0.86 0.83 0.88 0.15 

-0.9 0.18 0.89 0.87 0.88 0.85 

slightly inferior to the other two-stage estimators. A more detailed pairwise 
comparison of the various estimators follows below. 

Table 4 compares in greater detail the performance of the O.L.S. estimator 
to one of the better two stage methods, the Prais-Winsten one. O.L.S. is dis- 
tinctly inferior to the P.W. estimator for high (absolute value) p's, though it is 
not too bad when X is high (and hence the x's are 'smooth").'3 For small 
values of p(j pt <.2) the O.L.S. estimator is actually more efficient than the 
P.W. even though the latter is based on a two stage procedure. To understand 
this point let us treat the O.L.S. estimator as a particular case of the P.W. with 
the A coming from a population with zero mean and zero variance. Whenever 
the estimated A deviates from its true value the P.W. estimator loses effi- 
ciency, and the loss in efficiency is a function of A, p, and X. In the case of the 

U This is consistent with the argument presented by Chipman 1] for the efficiency of O,L.S. in the case of 
."smooth" xas. 
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O.L.S. estimator all the sample estimates are less efficient for non-zero p. But 
for the P.W. estimator the loss in efficiency has a distribution, because p comes 
from a population with non-zero variance. Table 4 shows that for small values 
of p the mean loss in efficiency is larger for the P.W. than for the O.L.S. esti- 
mator. 

For small values of p efficiency of the O.L.S. estimator of ,B is quite high 
and increases with the autocorrelation of the independent variable. Of course, 
it is not obvious what is a "high" or a "low" efficiency without reference to some 
kind of loss function. Perhaps the following argument has some intuitive appeal: 

A relative efficiency of 0.7 implies that one could reduce the standard error 
of j3 by about 16 per cent on the average by switching to the more efficient 
estimation method. This would raise a t-ratio from say 1.5 to 1.7. Such an im- 
provement appears to us to be just on the "margin" for many econometric 
problems. One would like to gain "more" from a more efficient procedure to 

TABLE 4. RELATIVE EFFICIENCY OF THE O.L.S. COMPARED TO THE 
P.W. ESTIMATOR OF , [M.S.E.(P.W.)/M.S.E.(O.L.S.)] 

LAMBDA 

RHO -O.8 -O.6 -O,4 -?.2 0.0 C.2 0.4 0.6 0.8 0*99 

0.99 0.19 0*32 0.14 0.29 0.14 C*22 C.21 0.25 0.23 0.41 

0.9 a.8e 0.51 0.23 0.27 0.30 C.23 0.29 0.30 0.29 0,54 

0.8 0.47 0.60 0.25 0.38 0*36 C*44 0.43 0.45 Q*55 0.37 

0.7 1.01 0.39 0.52 0.40 0.36 C*56 0.60 0*54 0,53 0.46 

0.6 0*63 0.81 0.57 0.43 0.70 0.A6 C.77 0.74 0.79 0,54 

0.5 1.08 1.15 0.72 0.77 0.67 C.76 0,81 0.90 0.70 0.60 

0.4 0.86 0.95 0.73 0.91 0.79 C.97 0.91 1.02 0.97 0.81 

0.3 1.08 0.75 1.01 0.78 0.79 1.01 0.8 0.84 0.83 0.89 

0.2 C.97 1.1 0.92 0.83 1*C7 0.92 C.97 1.04 1.11 0.97 

0,1 1.16 1.12 0.99 0.96 1i05 1,08 1.12 1.09 1.03 1.03 

o.a 1.08 1.24 1.17 1.08 0.87 C.95 1.07 1.00 1*10 1.22 

-0.1 1.01 1.13 1.13 1.05 1.03 1.08 0.97 1.06 0.96 0.87 

-0.2 1.C2 1.C7 1.12 1.01 1.31 1.18 0.85 0.97 0.97 0.96 

-0.3 1*02 0.88 0.95 0.93 0.98 C.97 0.90 0.99 1.00 0.94 

-O.4 0*78 1.08 1.00 0.67 0.59 C.71 0.61 0*95 1*01 8.83 

-0.5 0.86 0.90 C.68 0.70 0.57 C.71 0.74 0.61 0.68 0,90 

-O.6 0*71 0.69 0.64 0*98 0.65 0*40 0.55. 0*66 0.82 0.48 

-0.7 0.58 0.49 0.38 0.43 0.49 0.41 0.51 0.45 0.39 0.46 

-O.8 0,41 0.30 0.33 0.38 0.19 0,27 C.55 0.50 0.27 0I41 

-0.9 0*23 0.12 0.11 0.16 0.10 0.14 C.21 0.34 0.26 0.31 
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TABLE 5. RELATIVE EFFICIENCY OF THE P.W. ESTIMATOR 
COMPARED TO THE C.O. ESTIMATOR OF 3 

[M.S.E. (C.O.) /M.S.E. (P.W.)] 

LAMBDA 

RHO -0.8 -0.6 -C.4 -0.2 0.0 0.2 0*4 0.6 0.8 0.99 

0.99 0.90 0. 6 0*90 0,87 0.83 C.72 0.,8 0.87 0*84 0,89 

0.9 1.01 1.07 1.02 0.97 0.95 C.96 1.00 0.95 0.92 0.93 

0.8 1.01 1.02 0.98 0.94 1.05 1.13 0.98 1.00 1.00 1.39 

0.7 0.99 1.13 1.05 1.06 1.C0 1.01 0.94 1.11 1.08 1.44 

0.6 1.01 1.08 0.89 C.95 1.04 0*98 0*99 1.15 1.16 1*47 

0.5 1.05 1.18 0.99 0.98 0.97 1.10 1.05 0.97 1.00 1.22 

0.4 1.08 1.05 1.00 0.99 1.07 1.15 1.01 1.16 1.08 1.11 

0.3 1.02 1.25 1.05 1'.07 1.04 1.09 1.02 1*23 1.18 1.21 

0.2 1,04 1*11 0.96 1.00 1.06 0.94 0.6 1.10 1.16 1.10 

0.1 1.14 1.08 1.07 0.90 1.12 1.07 1.07 1.06 1.08 1.35 

0.0 1.10 1.32 1.02 1.0c 0.99 1.19 1.0' 0.98 1.01 0.89 

-0.1 1.16 1.10 1.00 1.05 1.08 1.15 1.04 1.11 1.06 0.98 

-0.2 1.06 1.26 1.03 1.05 1.C9 1.04 1.02 1.14 1.17 1.29 

-0.3 1.05 1.09 0*95 1.01 1.04 0.96 0*96 1.01 1.11 1.12 

-0.4 1.24 1.04 1.01 1.02 1.11 1.04 0.97 0.99 1.11 1.43 

-0.5 1.10 0.98 1.05 1.04 1.08 1.02 1.06 0.97 1.06 1.39 

-0.6 1.19 1.02 1.02 1.08 1.00 1.04 1.08 1.10 1.13 1.63 

-0*7 1.07 0.92 0.99 1.02 0.94 0.97 0.98 1.00 0.95 1.46 

-0*8 1.08 1.03 0.96 0.99 1.07 1.08 0.99 0.92 1.03 1.39 

-0.9 1.C1 0.88 0.95 1.00 1.02 C.97 1.02 1.00 1.04 1.41 

justify the more complex computation and interpretation. If one accepts this 
rule of thumb, one would not switch from the O.L.S. to the P.W. estimator in 
small samples unless one had good reasons to believe that true p is equal to 
0.4 or higher. 

Both the P.W. and the C.O. are two-stage procedures using A from the 
O.L.S. except that the P.W. uses an extra observation at the second stage. Does 
the additional observationi increase the efficiency of the P.W.? To answer this 
question we computed the relative efficiency of the P.W. compared to the 
C.O. in Table 5. The P.W. is more efficient than the C.0. except for values of 
p close to unity. When there is a strong trend in the errors the P.W. looses 
efficiency by including the first observation instead of "throwing it away" as 
in the C.O. 

In interpreting the results of Table 5 we should not forget that the P.W. has 
an extra degree of freedom over the 0.0. When we adjust for this additional 
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degree of freedom the gain in efficiency disappears except for values of X close 
to unity. That is, when the independent variable is strongly trending infor- 
mation contained in the first observation does increase the efficiency of the 
second stage of the P.W. estimator above and beyond what one would get just 
by adding an additional observation to the sample. 

The Durbin estimator and the C.O. are the same procedures except that one 
uses for A3 the coefficient of Yt-i in the expanded equation while the other is 
based on O.L.S. residuals. We have already noticed that neither of the p esti- 
mators has smaller M.S.E. over the entire parameter space. For a given 
parameter set we expect the least M.S.E. A to give the best results. To verify 
this point we computed the relative efficiency of the Durbin estimator compared 
to the C.O. in Table 6. It shows that the Durbin -estimator is more efficient 
than the C.O. for p larger than 0.3 and is consistent with the findings of Table 2 
which indicated that for p larger than 0.3 the Durbin A has the smaller M\.S.E. 

TABLE 6. RELATIVE EFFICIENCY OF THE DURBIN ESTIMATOR 
COMPARED TO THE C.O. ESTIMATOR OF , 

(M.S.E. (C.O.)/M.S.E. (Durbin)) 

LAMBDA 

RHO -0.8 -0.6 -C.4 -0.2 0.0 C02 C.4 0.6 0.8 0. 9 

0.99 1.04 1.03 1.02 1.42 1.06 1.13 1.28 1.83 1.17 1.84 

0.9 O0.7 0.91 1.03 160 1.15 .95 1.19 1.50 1.65 1.53 

0*8 1*03 1.01 1.1? 1*13 1.32 1.26 1.17 1.23 1.o0 1*32 

0.7 l1.0 1.06 1.10 1.00 1.11 1*C7 1.09 1.06 1.22 1.24 

0.6 1*04 1.03 0.98 1*04 1*09 1.09 1.21 1.00 1.05 1*29 

0.5 0.97 1.04 1.07 113 1.03 1.00 1.03 0.91 1.18 1.28 

0.4 1*04 0.99 1.14 0*96 1.08 1.02 C094 0*96 0*99 1.03 

0.3 1.00 1,05 1*06 1*.4 1.05 0.96 0.99 0.99 1.08 1.04 

0.2 1,03 1.04 0.99 1.02 1.01 1.06 1.08 1.01 0.94 1,10 

O.1 1,C2 1.02 1.00 1,00 0.S 1.02 1.C1 1.05 0*95 1.02 

0.0 1.00 1.0c 1.C3 0.94 1.01 0.8 0.99 0.94 0.97 1.10 

-0,1 0,96 1.06 1.01 0.94 1.05 C.S8 0.97 0.97 C.97 1.07 

-0,2 1.10 1.01 1.04 1.03 0,97 C.99 0.99 0.93 1.03 0.94 

-0.3 0.92 0,99 0.99 0,98 0.9? 1.08 1.0C 1.00 0.92 1.02 

-0.4 0,99 1.02 0.95 1.03 0.98 0.95 C.96 0,93 1.00 0.97 

-0.5 1.00 1.03 0.93 0.98 0.97 1.04 0.95 1.CO 0.99 1.01 

-0.6 0.94 1.12 1.07 0.95 1.03 1,07 1.CO 0.98 0.99 .098 

-0.7 1.05 1.04 C*98 0.98 1.03 0.93 1,01 1.04 1.03 0.98 

-0*8 1.18 1.09 1*34 1*04 1.06 1.03 1.02 0.98 1.03 1.00 

-0.9 1*32 1.24 0*99 0.93 0.98 C*.99 0.98 1.00 0.97 1.02 
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TABLE 7. RELATIVE EFFICIENCY OF THE P.W. ESTIMATOR WITH 
THE DURBIN P COMPARED TO THE DURBIN ESTIMATOR 

Efficiency = M.S.E. (Durbin)/M.S.E. (P.W. with Durbin P) 

p~~~~~~~~~~~ 
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 

0.9 1.07 1.09 1.03 0.97 0.98 0.99 1.01 0.90 1.08 
0.8 1.02 1.01 1.02 0.96 1.11 1.15 0.95 1.02 1.04 
0.7 0.99 1.17 1.06 1.10 1.01 1.01 0.98 1.14 1.08 
0.6 1.01 1.07 0.89 0.96 1.05 0.96 0.99 1. 18 1.17 
0.5 1.08 1.17 0.99 0.99 0.96 1.13 1.05 0.98 1.01 
0.4 1.08 1.05 1.00 1.00 1.13 1.17 1.01 1.18 1.09 
0.3 1.02 1.27 1.05 1.08 1.05 1.10 1.03 1.25 1.18 
0.2 n.c. 1.11 0.96 1.00 1.06 0.95 0.96 1.11 1.18 

n.c. =not computed. 

We noted above that the P.W. estimator is more efficient than the C.O. 
because of the extra degree of freedom. Since the Durbin estimator is more 
efficient than the C.O. for p larger than 0.3 and is not significantly less efficient 
for other values of p we definitely gain efficiency by using the Durbin - in the 
P.W. The relative efficiency of the P.W. with the Durbin estimated A com- 
pared to the Durbin is represented in Table 7 for selected values of p. Com- 
parison of these results with Table 8 (which provides a direct comparison of 
the Durbin and the original P.W. estimators) shows that except for high X the 
gain in efficiency is largely the result of the extra degree of freedom. Even 
though the Durbin p gives a "better" weight to the first observation this has 
only a small effect on the efficiency of the second stage. 

The non-linear estimator is a maximum likelihood estimator under normality 
and convergence assumptions. The two-stage estimators are one-iteration 
methods while the non-linear estimator continues to iterate until convergence 
is achieved. In large samples both types of estimators are equally efficient. In 
principle, the non-linear procedure uses, and hence, also should provide more 
information than one iteration procedures in small samples. To verify this we 
computed the relative efficiency of the non-linear and the Durbin estimator in 
Table 9. 

The non-linear estimator appears to be more efficient only when p and X are 
both negative and very high. For the most part the non-linear estimator is 
about as efficient as the Durbin one, but it is certainly no improvement oni it. 
In addition, a number of "outliers" give it very high M.S.E.'s for high p and X 
of opposite sign. We examined several of these outliers in greater detail and 
found no multiple minima or other irregularities in the RSS function. What 
happens is that for high X and p, the RSS function is often very flat over a 
significant range of parameter values. In these cases the non-linear procedure 
may converge to the wrong values of p and A. The point of convergence is not 
a local minimum, but the function is effectively stationary in its neighborhood. 
This type of "outliers" could be elimninated through the use of a scanning rou- 
tine. But even when the non-linear procedure converged to the "right" values, 
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TABLE 8. RELATIVE EFFICIENCY OF THE P.W. ESTIMATOR 
COMPARED TO THE DURBIN ESTIMATOR OF p 

(M.S.E. (Durbin)/M.S.E. (P.W.)) 

LAMBDA 

RHO -0.8 -0.6 -0.4 -002 0.0 02 O*4 0*6 0.8 0*99 

0.99 0.87 0.75 0.88 0*62 0*78 0.64 0.69 0.47 0.72 0.48 

0.9 1.04 1.18 0.98 0.61 0.83 100 0,85 0.64 0*56 0,61 

0.8 0.98 1.01 0.84 0.83 0.79 0.89 0*84 0.82 1*00 1.05 

0.7 1.00 1.07 0.96 1,05 0.90 0.94 0.87 1.04 0,88 1.15 

0.6 0.97 1*06 0*91 0.92 0.95 0*89 0.82 1.16 1.10 1*14 

0.5 1.09 1.13 0.92 0*87 0.94 1.10 1.01 1.07 0.85 0.95 

0,4 1.04 1.05 0.88 1.03 1.00 1.13 1.07 1.21 1.09 1.08 

0.3 1.02 1*19 0.99 1.03 0.99 1.14 1.03 1.24 1.09 1.16 

0.2 1.01 1*07 0.97 0.98 1*05 0.89 0.89 1.10 1.23 1.00 

0.1 L.11 1.05 1.06 0.90 1.14 1.05 1.06 1.01 1.14 1.32 

0.0 1.10 1.32 0.99 1,07 0.98 1.21 1.05 1.04 1.04 0.81 

-0*1 1.21 1.04 0.99 1.12 1.03 1.17 1.07 1.14 1.09 0.91 

-0.2 C096 1.24 0.99 1.02 1.12 1.05 1*03 1.24 1.14 1.37 

-0.3 1.14 1*09 0.96 1.03 1.08 0.89 0,96 1.02 1.20 1.10 

-0*4 1.26 1*02 1.07 1.00 1.13 1.09 1C00 1.06 1*11 1.47 

-0.5 .101 0.95 1.12 1*06 1.12 0.98 1.11 O.97 1.06 1.38 

-0.6 1.27 0.92 0.96 1.14 0*97 0.97 1.07 1.12 1*15 1.67 

-0.7 1.02 0.89 1.01 1.04 0.91 1.05 0*97 0.96 0*92 1.48 

-0.8 0.91 0.94 0.72 0.95 1.01 1.06 C.97 0.95 1.0C 1.40 

-0*9 0.76 0.71 0.96 1,08 1.04 0.98 1.04 1.00 1.08 1.39 

as it did most of the time, the resulting estimates were not appreciably better 
than those obtained from one-iteration methods. Thus there is little gain to be 
had from more complex procedures in samples of this size.14 

One never knows, of course, the true p in practice. All one can have is an 
estimate of it, p. Can one choose a better estimator on the basis of an estimated 
p? To answer this question we investigated the performance of several mixed 
estimators based on the O.L.S. p. These estimators switch to the P.W. method 

14 The P.W. estimator gained efficiency by making partial use of the first observation. In principle, the non- 
linear estimator should also be more efficient if we provided it with information on how the first observation was 
generated. To verify this we defined the residual sum of squares (RSS) funletion as follows: 

20 2 2 2 
RSS = wt + (1 -p)u, 

2 

and minimized it with respect to p and P by using the non-linear procedure. Except for p and X very close to unity 
this showed some improvement over the original non-linear procedure. But the gain in efficiency was not large 
enough to change the earlier conclusions about the relative performance of non-linear and one,-iteration methods. 

This content downloaded from 128.235.251.160 on Sat, 31 Jan 2015 12:41:02 PM
All use subject to JSTOR Terms and Conditions



TWO-STAGE REGRESSION METHODS 267 
TABLE 9. RELATIVE EFFICIENCY OF THE DURBIN AND 

NON-LINEAR ESTIMATORS OF j 
[M.S.E. (non-linear)/M.S.E. (Durbin)] 

LAMBDA 

RHO -0.8 -O.6 -0.4 -0.2 0.0 C*2 0.4 0.6 0.8 0.99 

0,99 52.00 1*05 1.04 1.25 1.02 1.01 1.02 1.18 0.89 1.35 

0.9 7*70 1.01 1*02 1.72 1.05 1*eo 1.03 1.19 1*30 1.13 

0.8 1.02 2.02 1.05 1.06 1.38 1.16 1.05 1.14 0.99 1.33 

0.7 1.01 1.01 1.07 1.01 0.97 1.01 1.C3 1.05 1*24 1.17 

0.6 2.22 1*03 C.96 0.98 1.09 1.07 1.19 1.14 1.0 1.24 

0,5 0.99 1.10 1.06 1.01 1*00 1.04 1C03 0.94 1.13 1.47 

0.4 1.68 1*02 1.12 1.05 1.07 1.04 0.99 1.01 1.07 1.12 

0.3 1.25 1.04 1.21 1.02 1.05 1.00 1.04 1.05 1.11 1.07 

0.2 1.01 1.05 1.00 1.03 1*04 1.09 1.06 1.05 1.05 1.16 

0.1 1.14 1.10 1.07 1.00 1.05 1.06 1.06 1.09 1.02 1.09 

0.0 1.01 1.11 1.06 1.31 1.01 1CO 1.02 0.95 1.01 1.24 

-0.1 1.02 1.19 1.04 0.97 1.CS 1.00 0.97 1.09 1.02 1.30 

-0*2 1.12 1.0S I.C7 1.04 1.C7 1.06 1.03 0.92 1.C4 1.37 

-0.3 1.18 1.03 1.03 1.03 0.98 1.12 1.04 1.74 0.98 4.70 

-0.4 1.18 1.06 1.02 1.02 0.99 0.99 0.97 0.94 1.15 4.12 

-0.5 1.C8 1.01 0.95 1.00 0.95 0.95 1.02 0.99 0.98 3.08 

-0.6 1.05 0.95 1.01 1.04 1.06 1.02 0.92 1.OC C.99 2.66 
-C.7 0.99 0.94 0.98 0.92 1.08 1.00 1.00 1.01 2.93 6.15 

-0.8 0.52 0.93 1.01 0.91 0.93 0.96 1.01 1.06 3.49 7.04 

-0.9 0.67 0.89 0.98 0,99 1.00 0.98 1.00 1.00 1.00 23.21 

if the computed A is higher than some critical value, and stay with the O.L.S. 
estimator otherwise. None of these estimators was superior to the others over 
the whole range of parameter values, but a mixed estimator switching to P.W. 
when I Al ? .3 appears to be a good compromise, losing very little efficiency to 
the "best" estimators over the whole range of parameters.'5 A comparison of 
this estimator to the P.W. one is presented in Table 10. 

6. SUMMARY 

We started this investigation with the hunch that the sampling variation in 
p may, in small samples, negate much of the promiserd gain from " efficient" pro- 
cedures. This hunch proved to be wrong. For the sample size (T = 20) and the 
type of x series exarnined (first order Markov with X from - .8 to .99) there 
is a significant gain in efficiency to be had from using two stage estimation 

15 If one suispects that the true p is positive, one should base the mixed estimator on the less biased Durbin p. 
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TABLE 10. THE RELATIVE EFFICIENCY OF A MIXED ESTIMATOR 
BASED ON THE SWITCHING POINT I 

- I > 0.3 

Efficiency = M.S.E.(P.W.)/M.S.E.(Mixed: Ipcriti=i, a =0.3) 

LA#4BOA 

RM0 -0.8 -0.8 -C.4 -0.2 0.0 0.2 C.4 0.6 C.8 

0.9 1.00 1.0C 1.00 0.94 0.95 0.98 0.98 0.99 0.98 

0.8 0.95 0.97 1.00 0.96 0.89 0.91 1.01 0.95 C.98 

0.7 1.C0 1.0C 0.91 1.04 0.e8 0.95 0.88 0.91 0.89 

0.6 0.92 0.99 C.98 0.95 0.91 0S.9 C.97 0.94 C.97 

0.5 0.97 0.97 0.80 0.80 0.94 0.90 0.96 0.97 0.97 

0.4 0.93 0.98 0.98 0.99 0.90 0.92 1.01 1.06 1.02 

0.3 0.99 0.95 C.94 0.90 0.89 1.01 C.95 0.99 0.97 

0.2 1.04 1.03 0.95 0.89 1.08 0.94 1.02 1.C4 1.02 

0.1 1.09 1.06 0.96 0.95 1.05 1.42 1.00 1.04 0.96 

0.0 0.92 1.08 1*04 1.04 1*01 0*97 0*98 1.04 1.02 

-0.1 Q.98 1.02 C.98 1.01 1.03 1.04 0.95 N.C. 0.99 

-0.2 N.C. 10.97 1.08 0.99 1.07 1.01 0*89 1.05 1.00 

-0.3 0.93 0.98 0.97 0.99 0*97 0.99 1.00 0.91 1.01 

-0.4 O0eC 0*97 1.00 0.97 1*00 0.98 0.90 0*93 1.04 

-0.5 0.96 0.99 0.99 0.94 0.93 0.89 1.01 0.98 N.C. 

-0.6 0.93 0.93 0.95 1.08 1.03 0.90 0.95 1.02 0.99 

-0.7 0.97 0.97 0.95 0.90 0*99 0.98 1.01 0.82 1.00 

-0.8 1.00 0.99 0.96 1.00 1.00 C.95 1.01 1.00 1.00 

-0.9 0.92 0.91 1.00 1.00 1.0o 1.00 1.00 1.00 1.00 

a.c. =not computed. 

procedures for moderate and high levels of serial correlation in the residuals 
[I -I >.31 and very little loss from using such methods even when the true 
p is small.'6 

Among the various efficient estimators examined we find that a two-stage 
estimator based on the Durbin A (the coefficient of yt-i in the expanded equa- 
tion) and incorporating the first observation with appropriate weight in the 
sum of squares to be minimized, is likely to do best over a wider range of 
parameters than any of the other estimators examined. The gain from includinig 
the beginning observation may be quite high if it is significantly different from 
the average.17 Only if p is very high, does the added error in the first observa- 
tion outweight the information contained therein. 

Non-linear maximum likelihood procedures are no improvement over the 
16 These results are, of course, conditional on the specification of the model. In particular, the critical value of 

p is a decreasing function of sample size. 
17 The beginning observation should be included in the suggested way only if it can be assumed that the process 

generating the disturbances started a long time ago and has operated and continues to do so without breaks. 
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simpler two-stage procedures in samples of this size. If they are going to be 
used, they should be supplemented by a scanning routine to guard against con- 
vergence to stationary but not maximum points on the likelihood function. 

We conclude that where computational costs are a consideration, a com- 
promise mixed strategy of switching to a second-stage only if the estimated 

> 2.3 should do relatively well over the whole parameter range.'8 

REFERENCES 

[1] Chipman, J. S. (1965). "The Problem of Testing for Serial Correlation: the Story of a 
Dilemma", University of Minnesota, mimeographed unpublished paper. 

[2] Cochrane, D., and Orcutt, G. H. (1949). "Application of Least Squares Regression 
to Relationships Containing Autocorrelated Error Terms", Journal of American 
Statistical Association, 44 (1), 32-61. 

[3] Dhrymes, P. J. (1966). "On the Treatment of Certain Recurrent Non-linearities in 
Regression Analysis", Southern Economic Journal, Vol. 33. 

[4] Durbin, J. (1960). "The Fitting of Time-Series Models", Review of the International 
Statistical Institute, 28, 233-243. 

[5] Hartley, H. 0. (1961). "The Modified Gauss-Newton Method for the Fitting of Non- 
linear Regression Functions by Least Squares", Technometrics, 3. 

[6] Hildreth, C. (1966). "Asymptotic Distribution of Maximum Likelihood Estimators 
in Linear Models with Autoregressive Disturbances", RAND Memorandum, RM- 
5059-PR, Santa Monica. 

[7] Hildreth, C. and Lu, J. Y. (1960). Demand Relations with Autocorrelated Distur- 
bances, Res. Bull. 276, Michigan State AES. 

[8] Johnston, J. (1963). Econometric Methods. New York, McGraw-Hill. 
[9] Kendall, M. G. (1954). "Note on Bias in the Estimation of Autocorrelation", Bio- 

metrika, 41, 403-404. 
[10] Malinvaud, E. (1966). Statistical Methods of Econometrics. Chicago: Rand McNally 

and Company. 
[11] Orcutt, G. H. and Winokur, H. S. (1969). "First Order Autoregression: Inference, 

Estimation, and Prediction", Econometrica, forthcoming. 
[12] Prais, S. J., and Winsten, C. B. (1954). "Trend Estimators and Serial Correlation," 

unpublished Cowles Commission discussion paper: Stat. No. 383, Chicago. 
[13] Rao, P. (1968). "The Generalized Gauss-Newton Procedure to fit Nonlinear Regres- 

sions", unpublished paper, Chicago. 
[14] Watson, G. S. (1955). "Serial Correlation in Regression Analysis", Biometrika, 42, 

327-341. 
[15] Watson, G. S., and Hannan, E. J. (1956). "Serial Correlation in Regression Analysis 

II", Biometrika, 43. 
[16] Wold, H. (1949). "On Least Squares Regression with Autocorrelated Error Terms", 

Bulletin of the International Statistical Institute, 32 (2). 
[17] Zellner, A., and Tiao, G. (1964). "Bayesian Analysis of the Regression Model with 

Autocorrelated Errors", Journal of the American Statistical Association, 59. 

APPENDIX 

Equation 1. 

E* (>j2 E X2 
I + PX 

1 1 1-pX 

18 Among the problems not examined in this paper is the possibility of improving upon the performance of the 
two-stage methods by adjusting ̂  upward for its known downward bias. A recent Monte-Carlo experiment by 
Orcutt and Winokur [111] indicates that this is not a promising avenue. The reduction of bias leads to an increase in 
variance with little or no improvement in the mean square error. Similarly, we have not explored the utilization of 
prior knowledge of the bounds of p via Bayesian techniques. On this see the important paper by Zellner and Tiao [171. 
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Proof: 
/T \2 T T T\2 T (? XtZUt) = /.LXSott 

E ( E XtUt) = SU- E Xt + 2Po_(X1X2 + X2X3 + + XT-1XT) 

+ 2p2 (xix3 + X2X4 + * + XT-2XT) + 

Neglecting the cross product terms of x and v for large samples, 

T 2 T T-1~2 2 - 

(E xtut) = u xt + 2pXo- X x2+ 2 2\ 2 TE 2 

= Ol 2 t I + 2pX + 2p X + 2p 

XT XT + XT-1 - 2pX - 2p2X2 
2 2 

Zxt Xt 
1 1 

Since p and X are less than one in magnitude, for reasonably large samples, we 
may ignore the negative terms in the above expression. The series is convergent. 
Hence 

E ( E xtut)2~ f. xti{i + 2pX] 

2 T 2 l + PX 
qfu EXt - 

1~ ZX pX 

Equation 2. 

E ( 

etet-l 0u [p (T-1-1 - (p +X)] 

Proof: 

Yte xt + et 

where 

T T 
=XtYt/ ~Xt 

T 

1 
et = y - xt___- 

2 
Xt 
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eX(f3Xt + Ut) 

et-3Xt +u2t-xt 2t 

Xt /T \ 
-Ut- I: XtUt) 

-' 2 1 / 
EXt 

T 

Xt Xtti 
1 

- UtUt-1i- X -2 *XtUt - X2 zXtu t + j2X2 . 2 XX2 
t t t t 

EXtUt-1 Xxtut Ixt-lUtIXtut 
*Xt (Ut-i leteti_ = lUtUt-i + --(.--2--2XtUt)-2 

t t t t 

- X2U1(XlUl + X2U2 + + XTUT) 

+ X3U2(XlUl + X2U2 + * + X TUT) 

+ . . . . . . . . . . . . . . . . . . 

E _xu-lxu 

2 2 
2 (X2X1 + X2p + X2X3P + . . . 

=- x2 + X3X1p + X3X2 + X3p + 
t . .. .. .. .. .. .. .. . 

Similarly 

22 
/2Xt-iUt2Xtt\ U a ( Xlp + x1x2 + X1X3p + *** E ~ ~ ~ A Ql2 2 ? 2 

2; 2X ) zX2 t+ X2 X 1P + X2P + X2X3P +***J 

Since p and X are smaller than 1 in magnitude 

E TaXtUt-llxtut Xxt_lUtxtutX 

t t 

2 2 3 2 3 32 
2 2o( +X Xp + + +X +X +X + ) 

= 20u (p + X + t X+ pX 

2 P+X 

1 - pX 
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using Equation 1. 

E eteti) 

2l? +PX 2 P+X 
(T - I)pT + XO P 2o I + X 

- X(1 + p2)-2(p + X)) 

2[( 1) +P( + PX) -p(l + pX) + X(l pX)2(p X) 

2 I~~1 I ffi 
- P -T 1 +pX-_(P+) 

Equation 3. 

E ( ? 2) 2 ( 1 1 + pX) 

Proof: 

Xt T 

et- Ut- T xtUt 
2 1 

LXt 

2 2 Xt xu 
et= ut +E Xtt - 2 2 XtUt 

Ext Ext 
I I 

Using equation 1 of the Appendix, 

TA2\ 2 2 l?+PX 2l?iA p E ( et (T -1)ou + 5a *-2u 

2 2 l+pX 
~ (T - l)o, u 1-pX 

2F 1 pX_ 
Ocru[(T 1 
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